utils.py 19.1 KB
Newer Older
1
import json
2
3
import logging
import os
4

5
6
7
import dgl
import numpy as np
import psutil
8
import pyarrow
9
import torch
10
11
from pyarrow import csv

12
import constants
13
14
15
from dgl.distributed.partition import (
    _dump_part_config
)
16

17
def read_ntype_partition_files(schema_map, input_dir):
18
    """
19
20
21
    Utility method to read the partition id mapping for each node.
    For each node type, there will be an file, in the input directory argument
    containing the partition id mapping for a given nodeid. 
22
23
24

    Parameters:
    -----------
25
26
27
28
29
    schema_map : dictionary
        dictionary created by reading the input metadata json file
    input_dir : string
        directory in which the node-id to partition-id mappings files are 
        located for each of the node types in the input graph
30
31
32

    Returns:
    --------
33
34
35
36
37
38
39
    numpy array : 
        array of integers representing mapped partition-ids for a given node-id.
        The line number, in these files, are used as the type_node_id in each of 
        the files. The index into this array will be the homogenized node-id and 
        value will be the partition-id for that node-id (index). Please note that 
        the partition-ids of each node-type are stacked together vertically and 
        in this way heterogenous node-ids are converted to homogenous node-ids. 
40
    """
41
42
43
44
45
46
47
48
49
50
51
52
    assert os.path.isdir(input_dir)

    #iterate over the node types and extract the partition id mappings
    part_ids = []
    ntype_names = schema_map[constants.STR_NODE_TYPE]
    for ntype in ntype_names:
        df = csv.read_csv(os.path.join(input_dir, '{}.txt'.format(ntype)), \
                read_options=pyarrow.csv.ReadOptions(autogenerate_column_names=True), \
                parse_options=pyarrow.csv.ParseOptions(delimiter=' '))
        ntype_partids = df['f0'].to_numpy()
        part_ids.append(ntype_partids)
    return np.concatenate(part_ids)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

def read_json(json_file):
    """
    Utility method to read a json file schema
    
    Parameters:
    -----------
    json_file : string
        file name for the json schema

    Returns:
    --------
    dictionary, as serialized in the json_file
    """
    with open(json_file) as schema:
        val = json.load(schema)

    return val

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def get_etype_featnames(etype_name, schema_map):
    """Retrieves edge feature names for a given edge_type

    Parameters:
    -----------
    eype_name : string
        a string specifying a edge_type name

    schema : dictionary
        metadata json object as a dictionary, which is read from the input
        metadata file from the input dataset

    Returns:
    --------
    list : 
        a list of feature names for a given edge_type
    """
    edge_data = schema_map[constants.STR_EDGE_DATA]
    feats = edge_data.get(etype_name, {})
    return [feat for feat in feats]

93
def get_ntype_featnames(ntype_name, schema_map): 
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    """
    Retrieves node feature names for a given node_type

    Parameters:
    -----------
    ntype_name : string
        a string specifying a node_type name

    schema : dictionary
        metadata json object as a dictionary, which is read from the input
        metadata file from the input dataset

    Returns:
    --------
    list : 
        a list of feature names for a given node_type
    """
111
112
113
    node_data = schema_map[constants.STR_NODE_DATA]
    feats = node_data.get(ntype_name, {})
    return [feat for feat in feats]
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def get_edge_types(schema_map):
    """Utility method to extract edge_typename -> edge_type mappings
    as defined by the input schema

    Parameters:
    -----------
    schema_map : dictionary
        Input schema from which the edge_typename -> edge_typeid
        dictionary is created.

    Returns:
    --------
    dictionary
        with keys as edge type names and values as ids (integers)
    list
        list of etype name strings
    dictionary
        with keys as etype ids (integers) and values as edge type names
    """
    etypes = schema_map[constants.STR_EDGE_TYPE]
    etype_etypeid_map = {e : i for i, e in enumerate(etypes)}
    etypeid_etype_map = {i : e for i, e in enumerate(etypes)}
    return etype_etypeid_map, etypes, etypeid_etype_map

139
def get_node_types(schema_map):
140
141
142
143
144
145
    """ 
    Utility method to extract node_typename -> node_type mappings
    as defined by the input schema

    Parameters:
    -----------
146
    schema_map : dictionary
147
148
149
150
151
        Input schema from which the node_typename -> node_type
        dictionary is created.

    Returns:
    --------
152
153
154
155
156
157
    dictionary
        with keys as node type names and values as ids (integers)
    list
        list of ntype name strings
    dictionary
        with keys as ntype ids (integers) and values as node type names
158
    """
159
160
161
    ntypes = schema_map[constants.STR_NODE_TYPE]
    ntype_ntypeid_map = {e : i for i, e in enumerate(ntypes)}
    ntypeid_ntype_map = {i : e for i, e in enumerate(ntypes)}
162
163
164
    return ntype_ntypeid_map, ntypes, ntypeid_ntype_map

def get_gnid_range_map(node_tids): 
165
    """
166
    Retrieves auxiliary dictionaries from the metadata json object
167
168
169

    Parameters:
    -----------
170
171
172
173
174
175
    node_tids: dictionary
        This dictionary contains the information about nodes for each node_type.
        Typically this information contains p-entries, where each entry has a file-name, 
        starting and ending type_node_ids for the nodes in this file. Keys in this dictionary
        are the node_type and value is a list of lists. Each individual entry in this list has
        three items: file-name, starting type_nid and ending type_nid
176
177
178
179

    Returns:
    --------
    dictionary : 
180
181
        a dictionary where keys are node_type names and values are global_nid range, which is a tuple.

182
    """
183
184
185
186
187
188
189
    ntypes_gid_range = {} 
    offset = 0
    for k, v in node_tids.items(): 
        ntypes_gid_range[k] = [offset + int(v[0][0]), offset + int(v[-1][1])]
        offset += int(v[-1][1])

    return ntypes_gid_range
190

191
def write_metadata_json(input_list, output_dir, graph_name, world_size, num_parts):
192
193
194
195
196
197
198
199
200
201
202
203
204
    """
    Merge json schema's from each of the rank's on rank-0. 
    This utility function, to be used on rank-0, to create aggregated json file.

    Parameters:
    -----------
    metadata_list : list of json (dictionaries)
        a list of json dictionaries to merge on rank-0
    output_dir : string
        output directory path in which results are stored (as a json file)
    graph-name : string
        a string specifying the graph name
    """
205
206
207
208
209
210
211
212
    # Preprocess the input_list, a list of dictionaries
    # each dictionary will contain num_parts/world_size metadata json 
    # which correspond to local partitions on the respective ranks.
    metadata_list = []
    for local_part_id in range(num_parts//world_size):
        for idx in range(world_size):
            metadata_list.append(input_list[idx]["local-part-id-"+str(local_part_id*world_size + idx)])

213
214
215
216
217
218
219
220
221
    #Initialize global metadata
    graph_metadata = {}

    #Merge global_edge_ids from each json object in the input list
    edge_map = {}
    x = metadata_list[0]["edge_map"]
    for k in x:
        edge_map[k] = []
        for idx in range(len(metadata_list)):
222
            edge_map[k].append([int(metadata_list[idx]["edge_map"][k][0][0]),int(metadata_list[idx]["edge_map"][k][0][1])])
223
224
225
226
227
228
229
230
231
232
233
234
    graph_metadata["edge_map"] = edge_map

    graph_metadata["etypes"] = metadata_list[0]["etypes"]
    graph_metadata["graph_name"] = metadata_list[0]["graph_name"]
    graph_metadata["halo_hops"] = metadata_list[0]["halo_hops"]

    #Merge global_nodeids from each of json object in the input list
    node_map = {}
    x = metadata_list[0]["node_map"]
    for k in x:
        node_map[k] = []
        for idx in range(len(metadata_list)):
235
            node_map[k].append([int(metadata_list[idx]["node_map"][k][0][0]), int(metadata_list[idx]["node_map"][k][0][1])])
236
237
238
    graph_metadata["node_map"] = node_map

    graph_metadata["ntypes"] = metadata_list[0]["ntypes"]
239
240
    graph_metadata["num_edges"] = int(sum([metadata_list[i]["num_edges"] for i in range(len(metadata_list))]))
    graph_metadata["num_nodes"] = int(sum([metadata_list[i]["num_nodes"] for i in range(len(metadata_list))]))
241
242
243
244
245
246
    graph_metadata["num_parts"] = metadata_list[0]["num_parts"]
    graph_metadata["part_method"] = metadata_list[0]["part_method"]

    for i in range(len(metadata_list)):
        graph_metadata["part-{}".format(i)] = metadata_list[i]["part-{}".format(i)]

247
    _dump_part_config(f'{output_dir}/metadata.json', graph_metadata)
248

249
def augment_edge_data(edge_data, lookup_service, edge_tids, rank, world_size, num_parts):
250
251
    """
    Add partition-id (rank which owns an edge) column to the edge_data.
252

253
254
255
256
    Parameters:
    -----------
    edge_data : numpy ndarray
        Edge information as read from the xxx_edges.txt file
257
258
259
260
261
262
263
264
265
266
    lookup_service : instance of class DistLookupService
       Distributed lookup service used to map global-nids to respective partition-ids and▒
       shuffle-global-nids
    edge_tids: dictionary
        dictionary where keys are canonical edge types and values are list of tuples
        which indicate the range of edges assigned to each of the partitions
    rank : integer
        rank of the current process
    world_size : integer
        total no. of process participating in the communication primitives
267
268
    num_parts : integer
        total no. of partitions requested for the input graph
269
270
271
272
273
274
275

    Returns:
    --------
    dictionary : 
        dictionary with keys as column names and values as numpy arrays and this information is 
        loaded from input dataset files. In addition to this we include additional columns which
        aid this pipelines computation, like constants.OWNER_PROCESS
276
    """
277
    #add global_nids to the node_data
278
279
280
281
    etype_offset = {}
    offset = 0
    for etype_name, tid_range in edge_tids.items(): 
        assert int(tid_range[0][0]) == 0
282
        assert len(tid_range) == num_parts 
283
284
285
286
287
        etype_offset[etype_name] = offset + int(tid_range[0][0])
        offset += int(tid_range[-1][1])

    global_eids = []
    for etype_name, tid_range in edge_tids.items(): 
288
289
290
291
292
293
        for idx in range(num_parts):
            if map_partid_rank(idx, world_size) == rank:
                global_eid_start = etype_offset[etype_name]
                begin = global_eid_start + int(tid_range[idx][0])
                end = global_eid_start + int(tid_range[idx][1])
                global_eids.append(np.arange(begin, end, dtype=np.int64))
294
295
    global_eids = np.concatenate(global_eids)
    assert global_eids.shape[0] == edge_data[constants.ETYPE_ID].shape[0]
296
297
    edge_data[constants.GLOBAL_EID] = global_eids

298
    #assign the owner process/rank for each edge 
299
300
    edge_data[constants.OWNER_PROCESS] = lookup_service.get_partition_ids(edge_data[constants.GLOBAL_DST_ID])
    return edge_data
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

def read_edges_file(edge_file, edge_data_dict):
    """ 
    Utility function to read xxx_edges.txt file

    Parameters:
    -----------
    edge_file : string
        Graph file for edges in the input graph

    Returns:
    --------
    dictionary
        edge data as read from xxx_edges.txt file and columns are stored
        in a dictionary with key-value pairs as column-names and column-data. 
    """
    if edge_file == "" or edge_file == None:
        return None

    #Read the file from here.
    #<global_src_id> <global_dst_id> <type_eid> <etype> <attributes>
    # global_src_id -- global idx for the source node ... line # in the graph_nodes.txt
    # global_dst_id -- global idx for the destination id node ... line # in the graph_nodes.txt

325
326
327
328
329
330
331
    edge_data_df = csv.read_csv(edge_file, read_options=pyarrow.csv.ReadOptions(autogenerate_column_names=True), 
                                    parse_options=pyarrow.csv.ParseOptions(delimiter=' '))
    edge_data_dict = {}
    edge_data_dict[constants.GLOBAL_SRC_ID] = edge_data_df['f0'].to_numpy()
    edge_data_dict[constants.GLOBAL_DST_ID] = edge_data_df['f1'].to_numpy()
    edge_data_dict[constants.GLOBAL_TYPE_EID] = edge_data_df['f2'].to_numpy()
    edge_data_dict[constants.ETYPE_ID] = edge_data_df['f3'].to_numpy()
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    return edge_data_dict

def read_node_features_file(nodes_features_file):
    """
    Utility function to load tensors from a file

    Parameters:
    -----------
    nodes_features_file : string
        Features file for nodes in the graph

    Returns:
    --------
    dictionary
        mappings between ntype and list of features
    """

    node_features = dgl.data.utils.load_tensors(nodes_features_file, False)
    return node_features

def read_edge_features_file(edge_features_file):
    """ 
    Utility function to load tensors from a file

    Parameters:
    -----------
    edge_features_file : string
        Features file for edges in the graph

    Returns:
    --------
    dictionary
        mappings between etype and list of features
    """
    edge_features = dgl.data.utils.load_tensors(edge_features_file, True)
    return edge_features

def write_node_features(node_features, node_file):
    """
    Utility function to serialize node_features in node_file file

    Parameters:
    -----------
    node_features : dictionary
        dictionary storing ntype <-> list of features
    node_file     : string 
        File in which the node information is serialized
    """
    dgl.data.utils.save_tensors(node_file, node_features)

def write_edge_features(edge_features, edge_file): 
    """
    Utility function to serialize edge_features in edge_file file

    Parameters:
    -----------
    edge_features : dictionary
        dictionary storing etype <-> list of features
    edge_file     : string 
        File in which the edge information is serialized
    """
    dgl.data.utils.save_tensors(edge_file, edge_features)

395
def write_graph_dgl(graph_file, graph_obj, formats, sort_etypes):
396
397
398
399
400
401
402
403
404
    """
    Utility function to serialize graph dgl objects

    Parameters:
    -----------
    graph_obj : dgl graph object
        graph dgl object, as created in convert_partition.py, which is to be serialized
    graph_file : string
        File name in which graph object is serialized
405
406
407
408
    formats : str or list[str]
        Save graph in specified formats.
    sort_etypes : bool
        Whether to sort etypes in csc/csr.
409
    """
410
411
    dgl.distributed.partition._save_graphs(graph_file, [graph_obj],
        formats, sort_etypes)
412

413
def write_dgl_objects(graph_obj, node_features, edge_features,
414
        output_dir, part_id, orig_nids, orig_eids, formats, sort_etypes):
415
    """
416
    Wrapper function to write graph, node/edge feature, original node/edge IDs.
417
418
419

    Parameters:
    -----------
420
421
422
423
424
425
    graph_obj : dgl object
        graph dgl object as created in convert_partition.py file
    node_features : dgl object
        Tensor data for node features
    edge_features : dgl object
        Tensor data for edge features
426
427
428
429
    output_dir : string
        location where the output files will be located
    part_id : int
        integer indicating the partition-id
430
431
432
433
    orig_nids : dict
        original node IDs
    orig_eids : dict
        original edge IDs
434
435
436
437
    formats : str or list[str]
        Save graph in formats.
    sort_etypes : bool
        Whether to sort etypes in csc/csr.
438
439
440
    """
    part_dir = output_dir + '/part' + str(part_id)
    os.makedirs(part_dir, exist_ok=True)
441
442
    write_graph_dgl(os.path.join(part_dir ,'graph.dgl'), graph_obj,
        formats, sort_etypes)
443
444
445
446
447
448

    if node_features != None:
        write_node_features(node_features, os.path.join(part_dir, "node_feat.dgl"))

    if (edge_features != None):
        write_edge_features(edge_features, os.path.join(part_dir, "edge_feat.dgl"))
449

450
451
452
453
454
455
456
    if orig_nids is not None:
        orig_nids_file = os.path.join(part_dir, 'orig_nids.dgl')
        dgl.data.utils.save_tensors(orig_nids_file, orig_nids)
    if orig_eids is not None:
        orig_eids_file = os.path.join(part_dir, 'orig_eids.dgl')
        dgl.data.utils.save_tensors(orig_eids_file, orig_eids)

457
def get_idranges(names, counts, num_chunks=None): 
458
459
460
461
462
463
464
465
466
    """
    Utility function to compute typd_id/global_id ranges for both nodes and edges. 

    Parameters:
    -----------
    names : list of strings
        list of node/edge types as strings
    counts : list of lists
        each list contains no. of nodes/edges in a given chunk
467
468
469
470
471
    num_chunks : int, optional
        In distributed partition pipeline, ID ranges are grouped into chunks.
        In some scenarios, we'd like to merge ID ranges into specific number
        of chunks. This parameter indicates the expected number of chunks.
        If not specified, no merge is applied.
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

    Returns:
    --------
    dictionary
        dictionary where the keys are node-/edge-type names and values are
        list of tuples where each tuple indicates the range of values for 
        corresponding type-ids. 
    dictionary
        dictionary where the keys are node-/edge-type names and value is a tuple.
        This tuple indicates the global-ids for the associated node-/edge-type.
    """
    gnid_start = 0
    gnid_end = gnid_start
    tid_dict = {}
    gid_dict = {}
487
    orig_num_chunks = 0
488
489
490
491
492
493
494
495
496
497
498
499
    for idx, typename in enumerate(names): 
        type_counts = counts[idx]
        tid_start = np.cumsum([0] + type_counts[:-1])
        tid_end = np.cumsum(type_counts)
        tid_ranges = list(zip(tid_start, tid_end))

        gnid_end += tid_ranges[-1][1]

        tid_dict[typename] = tid_ranges
        gid_dict[typename] = np.array([gnid_start, gnid_end]).reshape([1,2])

        gnid_start = gnid_end
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        orig_num_chunks = len(tid_start)

    if num_chunks is None:
        return tid_dict, gid_dict

    assert num_chunks <= orig_num_chunks, \
        'Specified number of chunks should be less/euqual than original numbers of ID ranges.'
    chunk_list = np.array_split(np.arange(orig_num_chunks), num_chunks)
    for typename in tid_dict:
        orig_tid_ranges = tid_dict[typename]
        tid_ranges = []
        for idx in chunk_list:
            tid_ranges.append((orig_tid_ranges[idx[0]][0], orig_tid_ranges[idx[-1]][-1]))
        tid_dict[typename] = tid_ranges
514
515
516

    return tid_dict, gid_dict

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

def memory_snapshot(tag, rank):
    """
    Utility function to take a snapshot of the usage of system resources
    at a given point of time.
    
    Parameters: 
    -----------
    tag : string
        string provided by the user for bookmarking purposes
    rank : integer
        process id of the participating process
    """
    GB = 1024 * 1024 * 1024
    MB = 1024 * 1024
    KB = 1024

    peak = dgl.partition.get_peak_mem()*KB
    mem = psutil.virtual_memory()
    avail = mem.available / MB
    used = mem.used / MB
    total = mem.total / MB

    mem_string = f'{total:.0f} (MB) total, {peak:.0f} (MB) peak, {used:.0f} (MB) used, {avail:.0f} (MB) avail'
    logging.debug(f'[Rank: {rank} MEMORY_SNAPSHOT] {mem_string} - {tag}')

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

def map_partid_rank(partid, world_size):
    """Auxiliary function to map a given partition id to one of the rank in the
    MPI_WORLD processes. The range of partition ids is assumed to equal or a 
    multiple of the total size of MPI_WORLD. In this implementation, we use
    a cyclical mapping procedure to convert partition ids to ranks.

    Parameters:
    -----------
    partid : int
        partition id, as read from node id to partition id mappings.

    Returns:
    --------
    int : 
        rank of the process, which will be responsible for the given partition
        id.
    """
    return partid % world_size