utils.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import torch
import numpy as np
import json
import dgl
import constants

def read_partitions_file(part_file):
    """
    Utility method to read metis partitions, which is the output of 
    pm_dglpart2

    Parameters:
    -----------
    part_file : string
        file name which is the output of metis partitioning
        algorithm (pm_dglpart2, in the METIS installation).
        This function expects each line in `part_file` to be formatted as 
        <global_nid> <part_id>
        and the contents of this file are sorted by <global_nid>. 

    Returns:
    --------
    numpy array
        array of part_ids and the idx is the <global_nid>
    """
    partitions_map = np.loadtxt(part_file, delimiter=' ', dtype=np.int64)
    #as a precaution sort the lines based on the <global_nid>
    partitions_map = partitions_map[partitions_map[:,0].argsort()]
    return partitions_map[:,1]

def read_json(json_file):
    """
    Utility method to read a json file schema
    
    Parameters:
    -----------
    json_file : string
        file name for the json schema

    Returns:
    --------
    dictionary, as serialized in the json_file
    """
    with open(json_file) as schema:
        val = json.load(schema)

    return val

def get_node_types(schema):
    """ 
    Utility method to extract node_typename -> node_type mappings
    as defined by the input schema

    Parameters:
    -----------
    schema : dictionary
        Input schema from which the node_typename -> node_type
        dictionary is created.

    Returns:
    --------
    dictionary, list 
        dictionary with ntype <-> type_nid mappings
        list of ntype strings
    """
    #Get the node_id ranges from the schema
    global_nid_ranges = schema['nid']
    global_nid_ranges = {key: np.array(global_nid_ranges[key]).reshape(1,2)
                    for key in global_nid_ranges}

    #Create an array with the starting id for each node_type and sort
    ntypes = [(key, global_nid_ranges[key][0,0]) for key in global_nid_ranges]
    ntypes.sort(key=lambda e: e[1])

    #Create node_typename -> node_type dictionary
    ntypes = [e[0] for e in ntypes]
    ntypes_map = {e: i for i, e in enumerate(ntypes)}

    return ntypes_map, ntypes

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def get_edge_types(schema): 
    """
    Utility function to form edges dictionary between edge_type names and ids

    Parameters
    ----------
    schema : dictionary
        Input schema from which the edge_typename -> edge_type
        dictionary is defined

    Returns
    -------
    dictionary:
        a map between edgetype_names and ids
    list: 
        list of edgetype_names
    """

    global_eid_ranges = schema['eid']
    global_eid_ranges = {key: np.array(global_eid_ranges[key]).reshape(1,2)
                    for key in global_eid_ranges}
    etypes = [(key, global_eid_ranges[key][0, 0]) for key in global_eid_ranges]
    etypes.sort(key=lambda e: e[1])

    etypes = [e[0] for e in etypes]
    etypes_map = {e: i for i, e in enumerate(etypes)}

    return etypes_map, etypes

def get_ntypes_map(schema): 
    """
    Utility function to return nodes global id range from the input schema
    as well as node count per each node type

    Parameters:
    -----------
    schema : dictionary
        Input schema where the requested dictionaries are defined

    Returns:
    --------
    dictionary : 
        map between the node_types and global_id ranges for each node_type
    dictionary : 
        map between the node_type and total node count for that type
    """
    return schema["nid"], schema["node_type_id_count"]

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def write_metadata_json(metadata_list, output_dir, graph_name):
    """
    Merge json schema's from each of the rank's on rank-0. 
    This utility function, to be used on rank-0, to create aggregated json file.

    Parameters:
    -----------
    metadata_list : list of json (dictionaries)
        a list of json dictionaries to merge on rank-0
    output_dir : string
        output directory path in which results are stored (as a json file)
    graph-name : string
        a string specifying the graph name
    """
    #Initialize global metadata
    graph_metadata = {}

    #Merge global_edge_ids from each json object in the input list
    edge_map = {}
    x = metadata_list[0]["edge_map"]
    for k in x:
        edge_map[k] = []
        for idx in range(len(metadata_list)):
153
            edge_map[k].append([int(metadata_list[idx]["edge_map"][k][0][0]),int(metadata_list[idx]["edge_map"][k][0][1])])
154
155
156
157
158
159
160
161
162
163
164
165
    graph_metadata["edge_map"] = edge_map

    graph_metadata["etypes"] = metadata_list[0]["etypes"]
    graph_metadata["graph_name"] = metadata_list[0]["graph_name"]
    graph_metadata["halo_hops"] = metadata_list[0]["halo_hops"]

    #Merge global_nodeids from each of json object in the input list
    node_map = {}
    x = metadata_list[0]["node_map"]
    for k in x:
        node_map[k] = []
        for idx in range(len(metadata_list)):
166
            node_map[k].append([int(metadata_list[idx]["node_map"][k][0][0]), int(metadata_list[idx]["node_map"][k][0][1])])
167
168
169
    graph_metadata["node_map"] = node_map

    graph_metadata["ntypes"] = metadata_list[0]["ntypes"]
170
171
    graph_metadata["num_edges"] = int(sum([metadata_list[i]["num_edges"] for i in range(len(metadata_list))]))
    graph_metadata["num_nodes"] = int(sum([metadata_list[i]["num_nodes"] for i in range(len(metadata_list))]))
172
173
174
175
176
177
178
179
180
    graph_metadata["num_parts"] = metadata_list[0]["num_parts"]
    graph_metadata["part_method"] = metadata_list[0]["part_method"]

    for i in range(len(metadata_list)):
        graph_metadata["part-{}".format(i)] = metadata_list[i]["part-{}".format(i)]

    with open('{}/{}.json'.format(output_dir, graph_name), 'w') as outfile: 
        json.dump(graph_metadata, outfile, sort_keys=True, indent=4)

181
def augment_edge_data(edge_data, part_ids, id_offset):
182
183
184
185
186
187
188
189
190
191
    """
    Add partition-id (rank which owns an edge) column to the edge_data.
    
    Parameters:
    -----------
    edge_data : numpy ndarray
        Edge information as read from the xxx_edges.txt file
    part_ids : numpy array
        array of part_ids indexed by global_nid
    """
192
193
194
195
    #add global_nids to the node_data
    global_eids = np.arange(id_offset, id_offset + len(edge_data[constants.GLOBAL_TYPE_EID]), dtype=np.int64)
    edge_data[constants.GLOBAL_EID] = global_eids

196
197
    edge_data[constants.OWNER_PROCESS] = part_ids[edge_data[constants.GLOBAL_DST_ID]]

198
def augment_node_data(node_data, part_ids, offset): 
199
200
201
202
203
    """
    Utility function to add auxilary columns to the node_data numpy ndarray.

    Parameters:
    -----------
204
205
206
    node_data : dictionary
        Node information as read from xxx_nodes.txt file and a dictionary is built using this data
        using keys as column names and values as column data from the csv txt file.
207
208
209
210
    part_ids : numpy array 
        array of part_ids indexed by global_nid
    """
    #add global_nids to the node_data
211
    global_nids = np.arange(offset, offset + len(node_data[constants.GLOBAL_TYPE_NID]), dtype=np.int64)
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    node_data[constants.GLOBAL_NID] = global_nids

    #add owner proc_ids to the node_data
    proc_ids = part_ids[node_data[constants.GLOBAL_NID]]
    node_data[constants.OWNER_PROCESS] = proc_ids

def read_nodes_file(nodes_file):
    """
    Utility function to read xxx_nodes.txt file
    
    Parameters:
    -----------
    nodesfile : string
        Graph file for nodes in the input graph
    
    Returns:
    --------
    dictionary
        Nodes data stored in dictionary where keys are column names
        and values are the columns from the numpy ndarray as read from the
        xxx_nodes.txt file
    """
    if nodes_file == "" or nodes_file == None:
        return None

    # Read the file from here.
    # Assuming the nodes file is a numpy file
    # nodes.txt file is of the following format
    # <node_type> <weight1> <weight2> <weight3> <weight4> <global_type_nid> <attributes>
    # For the ogb-mag dataset, nodes.txt is of the above format.
    nodes_data = np.loadtxt(nodes_file, delimiter=' ', dtype='int64')
    nodes_datadict = {}
    nodes_datadict[constants.NTYPE_ID] = nodes_data[:,0]
    nodes_datadict[constants.GLOBAL_TYPE_NID] = nodes_data[:,5]
    return nodes_datadict

def read_edges_file(edge_file, edge_data_dict):
    """ 
    Utility function to read xxx_edges.txt file

    Parameters:
    -----------
    edge_file : string
        Graph file for edges in the input graph

    Returns:
    --------
    dictionary
        edge data as read from xxx_edges.txt file and columns are stored
        in a dictionary with key-value pairs as column-names and column-data. 
    """
    if edge_file == "" or edge_file == None:
        return None

    #Read the file from here.
    #<global_src_id> <global_dst_id> <type_eid> <etype> <attributes>
    # global_src_id -- global idx for the source node ... line # in the graph_nodes.txt
    # global_dst_id -- global idx for the destination id node ... line # in the graph_nodes.txt

    edge_data = np.loadtxt(edge_file , delimiter=' ', dtype = 'int64')

    if (edge_data_dict == None): 
        edge_data_dict = {}
        edge_data_dict[constants.GLOBAL_SRC_ID] = edge_data[:,0]
        edge_data_dict[constants.GLOBAL_DST_ID] = edge_data[:,1]
        edge_data_dict[constants.GLOBAL_TYPE_EID] = edge_data[:,2]
        edge_data_dict[constants.ETYPE_ID] = edge_data[:,3]
    else: 
        edge_data_dict[constants.GLOBAL_SRC_ID] = \
            np.concatenate((edge_data_dict[constants.GLOBAL_SRC_ID], edge_data[:,0]))
        edge_data_dict[constants.GLOBAL_DST_ID] = \
            np.concatenate((edge_data_dict[constants.GLOBAL_DST_ID], edge_data[:,1]))
        edge_data_dict[constants.GLOBAL_TYPE_EID] = \
            np.concatenate((edge_data_dict[constants.GLOBAL_TYPE_EID], edge_data[:,2]))
        edge_data_dict[constants.ETYPE_ID] = \
            np.concatenate((edge_data_dict[constants.ETYPE_ID], edge_data[:,3]))
    return edge_data_dict

def read_node_features_file(nodes_features_file):
    """
    Utility function to load tensors from a file

    Parameters:
    -----------
    nodes_features_file : string
        Features file for nodes in the graph

    Returns:
    --------
    dictionary
        mappings between ntype and list of features
    """

    node_features = dgl.data.utils.load_tensors(nodes_features_file, False)
    return node_features

def read_edge_features_file(edge_features_file):
    """ 
    Utility function to load tensors from a file

    Parameters:
    -----------
    edge_features_file : string
        Features file for edges in the graph

    Returns:
    --------
    dictionary
        mappings between etype and list of features
    """
    edge_features = dgl.data.utils.load_tensors(edge_features_file, True)
    return edge_features

def write_node_features(node_features, node_file):
    """
    Utility function to serialize node_features in node_file file

    Parameters:
    -----------
    node_features : dictionary
        dictionary storing ntype <-> list of features
    node_file     : string 
        File in which the node information is serialized
    """
    dgl.data.utils.save_tensors(node_file, node_features)

def write_edge_features(edge_features, edge_file): 
    """
    Utility function to serialize edge_features in edge_file file

    Parameters:
    -----------
    edge_features : dictionary
        dictionary storing etype <-> list of features
    edge_file     : string 
        File in which the edge information is serialized
    """
    dgl.data.utils.save_tensors(edge_file, edge_features)

def write_graph_dgl(graph_file, graph_obj): 
    """
    Utility function to serialize graph dgl objects

    Parameters:
    -----------
    graph_obj : dgl graph object
        graph dgl object, as created in convert_partition.py, which is to be serialized
    graph_file : string
        File name in which graph object is serialized
    """
    dgl.save_graphs(graph_file, [graph_obj])

def write_dgl_objects(graph_obj, node_features, edge_features, output_dir, part_id): 
    """
    Wrapper function to create dgl objects for graph, node-features and edge-features
    graph_obj : dgl object
        graph dgl object as created in convert_partition.py file

    node_features : dgl object
        Tensor data for node features

    edge_features : dgl object
        Tensor data for edge features
    """

    part_dir = output_dir + '/part' + str(part_id)
    os.makedirs(part_dir, exist_ok=True)
379
    write_graph_dgl(os.path.join(part_dir ,'graph.dgl'), graph_obj)
380
381
382
383
384
385

    if node_features != None:
        write_node_features(node_features, os.path.join(part_dir, "node_feat.dgl"))

    if (edge_features != None):
        write_edge_features(edge_features, os.path.join(part_dir, "edge_feat.dgl"))