sign.py 7.28 KB
Newer Older
1
2
3
import argparse
import os
import time
4

5
6
7
import torch
import torch.nn as nn
import torch.nn.functional as F
8
9
from dataset import load_dataset

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import dgl
import dgl.function as fn


class FeedForwardNet(nn.Module):
    def __init__(self, in_feats, hidden, out_feats, n_layers, dropout):
        super(FeedForwardNet, self).__init__()
        self.layers = nn.ModuleList()
        self.n_layers = n_layers
        if n_layers == 1:
            self.layers.append(nn.Linear(in_feats, out_feats))
        else:
            self.layers.append(nn.Linear(in_feats, hidden))
            for i in range(n_layers - 2):
                self.layers.append(nn.Linear(hidden, hidden))
            self.layers.append(nn.Linear(hidden, out_feats))
        if self.n_layers > 1:
            self.prelu = nn.PReLU()
            self.dropout = nn.Dropout(dropout)
        self.reset_parameters()

    def reset_parameters(self):
        gain = nn.init.calculate_gain("relu")
        for layer in self.layers:
            nn.init.xavier_uniform_(layer.weight, gain=gain)
            nn.init.zeros_(layer.bias)

    def forward(self, x):
        for layer_id, layer in enumerate(self.layers):
            x = layer(x)
            if layer_id < self.n_layers - 1:
                x = self.dropout(self.prelu(x))
        return x


class Model(nn.Module):
    def __init__(self, in_feats, hidden, out_feats, R, n_layers, dropout):
        super(Model, self).__init__()
        self.dropout = nn.Dropout(dropout)
        self.prelu = nn.PReLU()
        self.inception_ffs = nn.ModuleList()
        for hop in range(R + 1):
            self.inception_ffs.append(
53
54
                FeedForwardNet(in_feats, hidden, hidden, n_layers, dropout)
            )
55
        # self.linear = nn.Linear(hidden * (R + 1), out_feats)
56
57
58
        self.project = FeedForwardNet(
            (R + 1) * hidden, hidden, out_feats, n_layers, dropout
        )
59
60
61
62
63
64
65
66
67

    def forward(self, feats):
        hidden = []
        for feat, ff in zip(feats, self.inception_ffs):
            hidden.append(ff(feat))
        out = self.project(self.dropout(self.prelu(torch.cat(hidden, dim=-1))))
        return out


68
def calc_weight(g):
69
70
71
72
73
    """
    Compute row_normalized(D^(-1/2)AD^(-1/2))
    """
    with g.local_scope():
        # compute D^(-0.5)*D(-1/2), assuming A is Identity
74
75
        g.ndata["in_deg"] = g.in_degrees().float().pow(-0.5)
        g.ndata["out_deg"] = g.out_degrees().float().pow(-0.5)
76
77
78
79
80
81
82
        g.apply_edges(fn.u_mul_v("out_deg", "in_deg", "weight"))
        # row-normalize weight
        g.update_all(fn.copy_e("weight", "msg"), fn.sum("msg", "norm"))
        g.apply_edges(fn.e_div_v("weight", "norm", "weight"))
        return g.edata["weight"]


83
def preprocess(g, features, args):
84
85
86
87
    """
    Pre-compute the average of n-th hop neighbors
    """
    with torch.no_grad():
88
89
        g.edata["weight"] = calc_weight(g)
        g.ndata["feat_0"] = features
90
        for hop in range(1, args.R + 1):
91
92
93
94
            g.update_all(
                fn.u_mul_e(f"feat_{hop-1}", "weight", "msg"),
                fn.sum("msg", f"feat_{hop}"),
            )
95
96
97
98
99
100
101
102
        res = []
        for hop in range(args.R + 1):
            res.append(g.ndata.pop(f"feat_{hop}"))
        return res


def prepare_data(device, args):
    data = load_dataset(args.dataset)
103
104
    g, n_classes, train_nid, val_nid, test_nid = data
    g = g.to(device)
105
106
107
    in_feats = g.ndata["feat"].shape[1]
    feats = preprocess(g, g.ndata["feat"], args)
    labels = g.ndata["label"]
108
109
110
111
112
113
    # move to device
    train_nid = train_nid.to(device)
    val_nid = val_nid.to(device)
    test_nid = test_nid.to(device)
    train_feats = [x[train_nid] for x in feats]
    train_labels = labels[train_nid]
114
115
116
117
118
119
120
121
122
123
124
    return (
        feats,
        labels,
        train_feats,
        train_labels,
        in_feats,
        n_classes,
        train_nid,
        val_nid,
        test_nid,
    )
125
126
127
128
129
130
131
132
133
134
135
136
137
138


def evaluate(epoch, args, model, feats, labels, train, val, test):
    with torch.no_grad():
        batch_size = args.eval_batch_size
        if batch_size <= 0:
            pred = model(feats)
        else:
            pred = []
            num_nodes = labels.shape[0]
            n_batch = (num_nodes + batch_size - 1) // batch_size
            for i in range(n_batch):
                batch_start = i * batch_size
                batch_end = min((i + 1) * batch_size, num_nodes)
139
                batch_feats = [feat[batch_start:batch_end] for feat in feats]
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
                pred.append(model(batch_feats))
            pred = torch.cat(pred)

        pred = torch.argmax(pred, dim=1)
        correct = (pred == labels).float()
        train_acc = correct[train].sum() / len(train)
        val_acc = correct[val].sum() / len(val)
        test_acc = correct[test].sum() / len(test)
        return train_acc, val_acc, test_acc


def main(args):
    if args.gpu < 0:
        device = "cpu"
    else:
        device = "cuda:{}".format(args.gpu)

    data = prepare_data(device, args)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    (
        feats,
        labels,
        train_feats,
        train_labels,
        in_size,
        num_classes,
        train_nid,
        val_nid,
        test_nid,
    ) = data

    model = Model(
        in_size,
        args.num_hidden,
        num_classes,
        args.R,
        args.ff_layer,
        args.dropout,
    )
178
179
    model = model.to(device)
    loss_fcn = nn.CrossEntropyLoss()
180
181
182
    optimizer = torch.optim.Adam(
        model.parameters(), lr=args.lr, weight_decay=args.weight_decay
    )
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

    best_epoch = 0
    best_val = 0
    best_test = 0

    for epoch in range(1, args.num_epochs + 1):
        start = time.time()
        model.train()
        loss = loss_fcn(model(train_feats), train_labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch % args.eval_every == 0:
            model.eval()
198
199
200
            acc = evaluate(
                epoch, args, model, feats, labels, train_nid, val_nid, test_nid
            )
201
202
            end = time.time()
            log = "Epoch {}, Times(s): {:.4f}".format(epoch, end - start)
203
204
205
            log += ", Accuracy: Train {:.4f}, Val {:.4f}, Test {:.4f}".format(
                *acc
            )
206
207
208
209
210
211
            print(log)
            if acc[1] > best_val:
                best_val = acc[1]
                best_epoch = epoch
                best_test = acc[2]

212
213
214
215
216
    print(
        "Best Epoch {}, Val {:.4f}, Test {:.4f}".format(
            best_epoch, best_val, best_test
        )
    )
217
218
219
220
221
222


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="SIGN")
    parser.add_argument("--num-epochs", type=int, default=1000)
    parser.add_argument("--num-hidden", type=int, default=256)
223
    parser.add_argument("--R", type=int, default=3, help="number of hops")
224
225
226
227
228
229
    parser.add_argument("--lr", type=float, default=0.003)
    parser.add_argument("--dataset", type=str, default="amazon")
    parser.add_argument("--dropout", type=float, default=0.5)
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--weight-decay", type=float, default=0)
    parser.add_argument("--eval-every", type=int, default=50)
230
231
232
233
234
235
236
237
238
    parser.add_argument(
        "--eval-batch-size",
        type=int,
        default=250000,
        help="evaluation batch size, -1 for full batch",
    )
    parser.add_argument(
        "--ff-layer", type=int, default=2, help="number of feed-forward layers"
    )
239
240
241
242
    args = parser.parse_args()

    print(args)
    main(args)