sgc_reddit.py 3.15 KB
Newer Older
Tianyi's avatar
Tianyi committed
1
2
3
4
5
6
7
"""
This code was modified from the GCN implementation in DGL examples.
Simplifying Graph Convolutional Networks
Paper: https://arxiv.org/abs/1902.07153
Code: https://github.com/Tiiiger/SGC
SGC implementation in DGL.
"""
8
9
10
11
import argparse
import math
import time

Tianyi's avatar
Tianyi committed
12
13
14
15
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
16

Tianyi's avatar
Tianyi committed
17
18
import dgl.function as fn
from dgl import DGLGraph
19
from dgl.data import load_data, register_data_args
20
from dgl.nn.pytorch.conv import SGConv
Tianyi's avatar
Tianyi committed
21

22

23
def normalize(h):
24
25
    return (h - h.mean(0)) / h.std(0)

Tianyi's avatar
Tianyi committed
26

27
def evaluate(model, features, graph, labels, mask):
Tianyi's avatar
Tianyi committed
28
29
    model.eval()
    with torch.no_grad():
30
        logits = model(graph, features)[mask]  # only compute the evaluation set
Tianyi's avatar
Tianyi committed
31
32
33
34
35
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

36

Tianyi's avatar
Tianyi committed
37
38
39
40
def main(args):
    # load and preprocess dataset
    args.dataset = "reddit-self-loop"
    data = load_data(args)
41
    g = data[0]
42
43
    if args.gpu < 0:
        cuda = False
44
    else:
45
        cuda = True
46
        g = g.int().to(args.gpu)
47

48
49
50
51
52
    features = g.ndata["feat"]
    labels = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]
Tianyi's avatar
Tianyi committed
53
54
    in_feats = features.shape[1]
    n_classes = data.num_labels
55
    n_edges = g.number_of_edges()
56
57
    print(
        """----Data statistics------'
Tianyi's avatar
Tianyi committed
58
59
60
61
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
62
63
64
65
66
67
68
69
70
      #Test samples %d"""
        % (
            n_edges,
            n_classes,
            g.ndata["train_mask"].int().sum().item(),
            g.ndata["val_mask"].int().sum().item(),
            g.ndata["test_mask"].int().sum().item(),
        )
    )
Tianyi's avatar
Tianyi committed
71
72
73
74
75
76
77

    # graph preprocess and calculate normalization factor
    n_edges = g.number_of_edges()
    # normalization
    degs = g.in_degrees().float()
    norm = torch.pow(degs, -0.5)
    norm[torch.isinf(norm)] = 0
78
    g.ndata["norm"] = norm.unsqueeze(1)
Tianyi's avatar
Tianyi committed
79
80

    # create SGC model
81
82
83
    model = SGConv(
        in_feats, n_classes, k=2, cached=True, bias=True, norm=normalize
    )
84
85
    if args.gpu >= 0:
        model = model.cuda()
Tianyi's avatar
Tianyi committed
86
87
88
89
90
91
92

    # use optimizer
    optimizer = torch.optim.LBFGS(model.parameters())

    # define loss closure
    def closure():
        optimizer.zero_grad()
93
        output = model(g, features)[train_mask]
Tianyi's avatar
Tianyi committed
94
95
96
97
98
99
100
        loss_train = F.cross_entropy(output, labels[train_mask])
        loss_train.backward()
        return loss_train

    # initialize graph
    for epoch in range(args.n_epochs):
        model.train()
101
        optimizer.step(closure)
Tianyi's avatar
Tianyi committed
102

103
    acc = evaluate(model, features, g, labels, test_mask)
Tianyi's avatar
Tianyi committed
104
105
106
    print("Test Accuracy {:.4f}".format(acc))


107
108
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="SGC")
Tianyi's avatar
Tianyi committed
109
    register_data_args(parser)
110
111
112
113
114
115
116
    parser.add_argument("--gpu", type=int, default=-1, help="gpu")
    parser.add_argument(
        "--bias", action="store_true", default=False, help="flag to use bias"
    )
    parser.add_argument(
        "--n-epochs", type=int, default=2, help="number of training epochs"
    )
Tianyi's avatar
Tianyi committed
117
118
119
120
    args = parser.parse_args()
    print(args)

    main(args)