train_cls.py 5.21 KB
Newer Older
esang's avatar
esang committed
1
2
3
4
import argparse
import os
import urllib
from functools import partial
5
6

import provider
7
import torch
8
9
10
11
12
13
14
15
16
17
18
19
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import tqdm
from ModelNetDataLoader import ModelNetDataLoader
from pointnet2 import PointNet2MSGCls, PointNet2SSGCls
from pointnet_cls import PointNetCls
from torch.utils.data import DataLoader

import dgl
from dgl.data.utils import download, get_download_dir

20
21
22
23
24
25
torch.backends.cudnn.enabled = False


# from dataset import ModelNet

parser = argparse.ArgumentParser()
26
27
28
29
30
31
32
parser.add_argument("--model", type=str, default="pointnet")
parser.add_argument("--dataset-path", type=str, default="")
parser.add_argument("--load-model-path", type=str, default="")
parser.add_argument("--save-model-path", type=str, default="")
parser.add_argument("--num-epochs", type=int, default=200)
parser.add_argument("--num-workers", type=int, default=8)
parser.add_argument("--batch-size", type=int, default=32)
33
34
35
36
37
args = parser.parse_args()

num_workers = args.num_workers
batch_size = args.batch_size

38
data_filename = "modelnet40_normal_resampled.zip"
39
download_path = os.path.join(get_download_dir(), data_filename)
esang's avatar
esang committed
40
local_path = args.dataset_path or os.path.join(
41
42
    get_download_dir(), "modelnet40_normal_resampled"
)
43
44

if not os.path.exists(local_path):
45
46
47
48
49
    download(
        "https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip",
        download_path,
        verify_ssl=False,
    )
50
    from zipfile import ZipFile
51

52
53
54
55
    with ZipFile(download_path) as z:
        z.extractall(path=get_download_dir())

CustomDataLoader = partial(
esang's avatar
esang committed
56
57
58
59
    DataLoader,
    num_workers=num_workers,
    batch_size=batch_size,
    shuffle=True,
60
61
    drop_last=True,
)
esang's avatar
esang committed
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76

def train(net, opt, scheduler, train_loader, dev):

    net.train()

    total_loss = 0
    num_batches = 0
    total_correct = 0
    count = 0
    loss_f = nn.CrossEntropyLoss()
    with tqdm.tqdm(train_loader, ascii=True) as tq:
        for data, label in tq:
            data = data.data.numpy()
            data = provider.random_point_dropout(data)
77
            data[:, :, 0:3] = provider.random_scale_point_cloud(data[:, :, 0:3])
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
            data[:, :, 0:3] = provider.jitter_point_cloud(data[:, :, 0:3])
            data[:, :, 0:3] = provider.shift_point_cloud(data[:, :, 0:3])
            data = torch.tensor(data)
            label = label[:, 0]

            num_examples = label.shape[0]
            data, label = data.to(dev), label.to(dev).squeeze().long()
            opt.zero_grad()
            logits = net(data)
            loss = loss_f(logits, label)
            loss.backward()
            opt.step()

            _, preds = logits.max(1)

            num_batches += 1
            count += num_examples
            loss = loss.item()
            correct = (preds == label).sum().item()
            total_loss += loss
            total_correct += correct

100
101
102
103
104
105
            tq.set_postfix(
                {
                    "AvgLoss": "%.5f" % (total_loss / num_batches),
                    "AvgAcc": "%.5f" % (total_correct / count),
                }
            )
106
107
    scheduler.step()

esang's avatar
esang committed
108

109
110
111
112
113
114
115
116
117
def evaluate(net, test_loader, dev):
    net.eval()

    total_correct = 0
    count = 0

    with torch.no_grad():
        with tqdm.tqdm(test_loader, ascii=True) as tq:
            for data, label in tq:
esang's avatar
esang committed
118
                label = label[:, 0]
119
120
121
122
123
124
125
126
127
                num_examples = label.shape[0]
                data, label = data.to(dev), label.to(dev).squeeze().long()
                logits = net(data)
                _, preds = logits.max(1)

                correct = (preds == label).sum().item()
                total_correct += correct
                count += num_examples

128
                tq.set_postfix({"AvgAcc": "%.5f" % (total_correct / count)})
129
130
131

    return total_correct / count

esang's avatar
esang committed
132

133
134
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")

135
if args.model == "pointnet":
136
    net = PointNetCls(40, input_dims=6)
137
elif args.model == "pointnet2_ssg":
138
    net = PointNet2SSGCls(40, batch_size, input_dims=6)
139
elif args.model == "pointnet2_msg":
140
141
142
143
144
145
146
147
148
149
    net = PointNet2MSGCls(40, batch_size, input_dims=6)

net = net.to(dev)
if args.load_model_path:
    net.load_state_dict(torch.load(args.load_model_path, map_location=dev))

opt = optim.Adam(net.parameters(), lr=1e-3, weight_decay=1e-4)

scheduler = optim.lr_scheduler.StepLR(opt, step_size=20, gamma=0.7)

150
151
train_dataset = ModelNetDataLoader(local_path, 1024, split="train")
test_dataset = ModelNetDataLoader(local_path, 1024, split="test")
esang's avatar
esang committed
152
train_loader = torch.utils.data.DataLoader(
153
154
155
156
157
158
    train_dataset,
    batch_size=batch_size,
    shuffle=True,
    num_workers=num_workers,
    drop_last=True,
)
esang's avatar
esang committed
159
test_loader = torch.utils.data.DataLoader(
160
161
162
163
164
165
    test_dataset,
    batch_size=batch_size,
    shuffle=False,
    num_workers=num_workers,
    drop_last=True,
)
166
167
168
169
170
171

best_test_acc = 0

for epoch in range(args.num_epochs):
    train(net, opt, scheduler, train_loader, dev)
    if (epoch + 1) % 1 == 0:
172
        print("Epoch #%d Testing" % epoch)
173
174
175
176
177
        test_acc = evaluate(net, test_loader, dev)
        if test_acc > best_test_acc:
            best_test_acc = test_acc
            if args.save_model_path:
                torch.save(net.state_dict(), args.save_model_path)
178
        print("Current test acc: %.5f (best: %.5f)" % (test_acc, best_test_acc))