pointnet_partseg.py 5.15 KB
Newer Older
1
import numpy as np
2
3
4
5
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
6

7
8

class PointNetPartSeg(nn.Module):
9
10
11
    def __init__(
        self, output_classes, input_dims=3, num_points=2048, use_transform=True
    ):
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
        super(PointNetPartSeg, self).__init__()
        self.input_dims = input_dims

        self.conv1 = nn.ModuleList()
        self.conv1.append(nn.Conv1d(input_dims, 64, 1))
        self.conv1.append(nn.Conv1d(64, 128, 1))
        self.conv1.append(nn.Conv1d(128, 128, 1))

        self.bn1 = nn.ModuleList()
        self.bn1.append(nn.BatchNorm1d(64))
        self.bn1.append(nn.BatchNorm1d(128))
        self.bn1.append(nn.BatchNorm1d(128))

        self.conv2 = nn.ModuleList()
        self.conv2.append(nn.Conv1d(128, 512, 1))

        self.bn2 = nn.ModuleList()
        self.bn2.append(nn.BatchNorm1d(512))

        self.conv_max = nn.Conv1d(512, 2048, 1)
        self.bn_max = nn.BatchNorm1d(2048)

        self.maxpool = nn.MaxPool1d(num_points)
        self.pool_feat_len = 2048

        self.conv3 = nn.ModuleList()
38
        self.conv3.append(nn.Conv1d(2048 + 64 + 128 * 3 + 512 + 16, 256, 1))
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        self.conv3.append(nn.Conv1d(256, 256, 1))
        self.conv3.append(nn.Conv1d(256, 128, 1))

        self.bn3 = nn.ModuleList()
        self.bn3.append(nn.BatchNorm1d(256))
        self.bn3.append(nn.BatchNorm1d(256))
        self.bn3.append(nn.BatchNorm1d(128))

        self.conv_out = nn.Conv1d(128, output_classes, 1)

        self.use_transform = use_transform
        if use_transform:
            self.transform1 = TransformNet(self.input_dims)
            self.trans_bn1 = nn.BatchNorm1d(self.input_dims)
            self.transform2 = TransformNet(128)
            self.trans_bn2 = nn.BatchNorm1d(128)

    def forward(self, x, cat_vec=None):
        batch_size = x.shape[0]
        h = x.permute(0, 2, 1)
        num_points = h.shape[2]
        if self.use_transform:
            trans = self.transform1(h)
            h = h.transpose(2, 1)
            h = torch.bmm(h, trans)
            h = h.transpose(2, 1)
            h = F.relu(self.trans_bn1(h))

        mid_feat = []
        for conv, bn in zip(self.conv1, self.bn1):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)
            mid_feat.append(h)

        if self.use_transform:
            trans = self.transform2(h)
            h = h.transpose(2, 1)
            h = torch.bmm(h, trans)
            h = h.transpose(2, 1)
            h = F.relu(self.trans_bn2(h))
            mid_feat.append(h)

        for conv, bn in zip(self.conv2, self.bn2):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)
            mid_feat.append(h)

        h = self.conv_max(h)
        h = self.bn_max(h)
        h = self.maxpool(h).view(batch_size, -1, 1).repeat(1, 1, num_points)
        mid_feat.append(h)
        if cat_vec is not None:
            mid_feat.append(cat_vec)
        h = torch.cat(mid_feat, 1)
        for conv, bn in zip(self.conv3, self.bn3):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)

        out = self.conv_out(h)
        return out

103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
class TransformNet(nn.Module):
    def __init__(self, input_dims=3, num_points=2048):
        super(TransformNet, self).__init__()
        self.conv = nn.ModuleList()
        self.conv.append(nn.Conv1d(input_dims, 64, 1))
        self.conv.append(nn.Conv1d(64, 128, 1))
        self.conv.append(nn.Conv1d(128, 1024, 1))

        self.bn = nn.ModuleList()
        self.bn.append(nn.BatchNorm1d(64))
        self.bn.append(nn.BatchNorm1d(128))
        self.bn.append(nn.BatchNorm1d(1024))

        self.maxpool = nn.MaxPool1d(num_points)
        self.pool_feat_len = 1024

        self.mlp2 = nn.ModuleList()
        self.mlp2.append(nn.Linear(1024, 512))
        self.mlp2.append(nn.Linear(512, 256))

        self.bn2 = nn.ModuleList()
        self.bn2.append(nn.BatchNorm1d(512))
        self.bn2.append(nn.BatchNorm1d(256))

        self.input_dims = input_dims
        self.mlp_out = nn.Linear(256, input_dims * input_dims)

    def forward(self, h):
        batch_size = h.shape[0]
        for conv, bn in zip(self.conv, self.bn):
            h = conv(h)
            h = bn(h)
            h = F.relu(h)
137

138
139
140
141
142
143
144
145
        h = self.maxpool(h).view(-1, self.pool_feat_len)
        for mlp, bn in zip(self.mlp2, self.bn2):
            h = mlp(h)
            h = bn(h)
            h = F.relu(h)

        out = self.mlp_out(h)

146
147
148
149
150
151
152
153
        iden = Variable(
            torch.from_numpy(
                np.eye(self.input_dims).flatten().astype(np.float32)
            )
        )
        iden = iden.view(1, self.input_dims * self.input_dims).repeat(
            batch_size, 1
        )
154
155
156
157
158
159
        if out.is_cuda:
            iden = iden.cuda()
        out = out + iden
        out = out.view(-1, self.input_dims, self.input_dims)
        return out

160

161
162
163
164
165
class PartSegLoss(nn.Module):
    def __init__(self, eps=0.2):
        super(PartSegLoss, self).__init__()
        self.eps = eps
        self.loss = nn.CrossEntropyLoss()
166

167
168
169
170
171
    def forward(self, logits, y):
        num_classes = logits.shape[1]
        logits = logits.permute(0, 2, 1).contiguous().view(-1, num_classes)
        loss = self.loss(logits, y)
        return loss