"tests/vscode:/vscode.git/clone" did not exist on "fd1b14747aadf3db8ce20f7debc842d71f39109e"
modelnet.py 1.81 KB
Newer Older
1
2
3
import numpy as np
from torch.utils.data import Dataset

4

5
6
7
class ModelNet(object):
    def __init__(self, path, num_points):
        import h5py
8

9
10
11
        self.f = h5py.File(path)
        self.num_points = num_points

12
        self.n_train = self.f["train/data"].shape[0]
13
14
        self.n_valid = int(self.n_train / 5)
        self.n_train -= self.n_valid
15
        self.n_test = self.f["test/data"].shape[0]
16
17

    def train(self):
18
        return ModelNetDataset(self, "train")
19
20

    def valid(self):
21
        return ModelNetDataset(self, "valid")
22
23

    def test(self):
24
25
        return ModelNetDataset(self, "test")

26
27
28
29
30
31
32

class ModelNetDataset(Dataset):
    def __init__(self, modelnet, mode):
        super(ModelNetDataset, self).__init__()
        self.num_points = modelnet.num_points
        self.mode = mode

33
34
35
36
37
38
39
40
41
42
43
        if mode == "train":
            self.data = modelnet.f["train/data"][: modelnet.n_train]
            self.label = modelnet.f["train/label"][: modelnet.n_train]
        elif mode == "valid":
            self.data = modelnet.f["train/data"][modelnet.n_train :]
            self.label = modelnet.f["train/label"][modelnet.n_train :]
        elif mode == "test":
            self.data = modelnet.f["test/data"].value
            self.label = modelnet.f["test/label"].value

    def translate(self, x, scale=(2 / 3, 3 / 2), shift=(-0.2, 0.2)):
44
45
        xyz1 = np.random.uniform(low=scale[0], high=scale[1], size=[3])
        xyz2 = np.random.uniform(low=shift[0], high=shift[1], size=[3])
46
        x = np.add(np.multiply(x, xyz1), xyz2).astype("float32")
47
48
49
50
51
52
        return x

    def __len__(self):
        return self.data.shape[0]

    def __getitem__(self, i):
53
        x = self.data[i][: self.num_points]
54
        y = self.label[i]
55
        if self.mode == "train":
56
57
58
            x = self.translate(x)
            np.random.shuffle(x)
        return x, y