array.cc 37.1 KB
Newer Older
1
/**
2
 *  Copyright (c) 2019-2021 by Contributors
3
4
 * @file array/array.cc
 * @brief DGL array utilities implementation
5
6
 */
#include <dgl/array.h>
7
#include <dgl/graph_traversal.h>
8
9
#include <dgl/packed_func_ext.h>
#include <dgl/runtime/container.h>
10
#include <dgl/runtime/shared_mem.h>
11
12
#include <dgl/runtime/device_api.h>
#include <sstream>
13
14
15
16
#include "../c_api_common.h"
#include "./array_op.h"
#include "./arith.h"

17
using namespace dgl::runtime;
18

19
namespace dgl {
20
21
namespace aten {

22
23
IdArray NewIdArray(int64_t length, DGLContext ctx, uint8_t nbits) {
  return IdArray::Empty({length}, DGLDataType{kDGLInt, nbits, 1}, ctx);
24
25
26
27
28
29
30
31
}

IdArray Clone(IdArray arr) {
  IdArray ret = NewIdArray(arr->shape[0], arr->ctx, arr->dtype.bits);
  ret.CopyFrom(arr);
  return ret;
}

32
IdArray Range(int64_t low, int64_t high, uint8_t nbits, DGLContext ctx) {
33
  IdArray ret;
34
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Range", {
35
36
37
38
39
40
41
42
43
44
45
    if (nbits == 32) {
      ret = impl::Range<XPU, int32_t>(low, high, ctx);
    } else if (nbits == 64) {
      ret = impl::Range<XPU, int64_t>(low, high, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

46
IdArray Full(int64_t val, int64_t length, uint8_t nbits, DGLContext ctx) {
47
  IdArray ret;
48
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Full", {
49
50
51
52
53
54
55
56
57
58
59
    if (nbits == 32) {
      ret = impl::Full<XPU, int32_t>(val, length, ctx);
    } else if (nbits == 64) {
      ret = impl::Full<XPU, int64_t>(val, length, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

60
template <typename DType>
61
NDArray Full(DType val, int64_t length, DGLContext ctx) {
62
63
64
65
66
67
68
  NDArray ret;
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Full", {
    ret = impl::Full<XPU, DType>(val, length, ctx);
  });
  return ret;
}

69
70
71
72
template NDArray Full<int32_t>(int32_t val, int64_t length, DGLContext ctx);
template NDArray Full<int64_t>(int64_t val, int64_t length, DGLContext ctx);
template NDArray Full<float>(float val, int64_t length, DGLContext ctx);
template NDArray Full<double>(double val, int64_t length, DGLContext ctx);
73

74
IdArray AsNumBits(IdArray arr, uint8_t bits) {
75
76
77
78
79
  CHECK(bits == 32 || bits == 64)
    << "Invalid ID type. Must be int32 or int64, but got int"
    << static_cast<int>(bits) << ".";
  if (arr->dtype.bits == bits)
    return arr;
80
81
  if (arr.NumElements() == 0)
    return NewIdArray(arr->shape[0], arr->ctx, bits);
82
  IdArray ret;
83
  ATEN_XPU_SWITCH_CUDA(arr->ctx.device_type, XPU, "AsNumBits", {
84
85
86
87
88
89
90
91
92
    ATEN_ID_TYPE_SWITCH(arr->dtype, IdType, {
      ret = impl::AsNumBits<XPU, IdType>(arr, bits);
    });
  });
  return ret;
}

IdArray HStack(IdArray lhs, IdArray rhs) {
  IdArray ret;
93
94
  CHECK_SAME_CONTEXT(lhs, rhs);
  CHECK_SAME_DTYPE(lhs, rhs);
95
96
97
98
99
100
101
102
103
  CHECK_EQ(lhs->shape[0], rhs->shape[0]);
  auto device = runtime::DeviceAPI::Get(lhs->ctx);
  const auto& ctx = lhs->ctx;
  ATEN_ID_TYPE_SWITCH(lhs->dtype, IdType, {
    const int64_t len = lhs->shape[0];
    ret = NewIdArray(2 * len, lhs->ctx, lhs->dtype.bits);
    device->CopyDataFromTo(lhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), 0,
                           len * sizeof(IdType),
104
                           ctx, ctx, lhs->dtype);
105
106
107
    device->CopyDataFromTo(rhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), len * sizeof(IdType),
                           len * sizeof(IdType),
108
                           ctx, ctx, lhs->dtype);
Jinjing Zhou's avatar
Jinjing Zhou committed
109
110
111
112
  });
  return ret;
}

113
114
NDArray IndexSelect(NDArray array, IdArray index) {
  NDArray ret;
115
  CHECK_GE(array->ndim, 1) << "Only support array with at least 1 dimension";
116
  CHECK_EQ(index->ndim, 1) << "Index array must be an 1D array.";
117
118
119
120
  // if array is not pinned, index has the same context as array
  // if array is pinned, op dispatching depends on the context of index
  CHECK_VALID_CONTEXT(array, index);
  ATEN_XPU_SWITCH_CUDA(index->ctx.device_type, XPU, "IndexSelect", {
121
122
123
124
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        ret = impl::IndexSelect<XPU, DType, IdType>(array, index);
      });
125
126
127
128
129
    });
  });
  return ret;
}

130
template<typename ValueType>
131
ValueType IndexSelect(NDArray array, int64_t index) {
132
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
133
134
  CHECK(index >= 0 && index < array.NumElements())
    << "Index " << index << " is out of bound.";
135
  ValueType ret = 0;
136
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
137
138
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ret = impl::IndexSelect<XPU, DType>(array, index);
139
140
141
142
    });
  });
  return ret;
}
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
template int32_t IndexSelect<int32_t>(NDArray array, int64_t index);
template int64_t IndexSelect<int64_t>(NDArray array, int64_t index);
template uint32_t IndexSelect<uint32_t>(NDArray array, int64_t index);
template uint64_t IndexSelect<uint64_t>(NDArray array, int64_t index);
template float IndexSelect<float>(NDArray array, int64_t index);
template double IndexSelect<double>(NDArray array, int64_t index);

NDArray IndexSelect(NDArray array, int64_t start, int64_t end) {
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
  CHECK(start >= 0 && start < array.NumElements())
    << "Index " << start << " is out of bound.";
  CHECK(end >= 0 && end <= array.NumElements())
    << "Index " << end << " is out of bound.";
  CHECK_LE(start, end);
  auto device = runtime::DeviceAPI::Get(array->ctx);
  const int64_t len = end - start;
  NDArray ret = NDArray::Empty({len}, array->dtype, array->ctx);
  ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
    device->CopyDataFromTo(array->data, start * sizeof(DType),
                           ret->data, 0, len * sizeof(DType),
163
                           array->ctx, ret->ctx, array->dtype);
164
165
166
  });
  return ret;
}
167

168
169
NDArray Scatter(NDArray array, IdArray indices) {
  NDArray ret;
170
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Scatter", {
171
172
173
174
175
176
177
178
179
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(indices->dtype, IdType, {
        ret = impl::Scatter<XPU, DType, IdType>(array, indices);
      });
    });
  });
  return ret;
}

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
void Scatter_(IdArray index, NDArray value, NDArray out) {
  CHECK_SAME_DTYPE(value, out);
  CHECK_SAME_CONTEXT(index, value);
  CHECK_SAME_CONTEXT(index, out);
  CHECK_EQ(value->shape[0], index->shape[0]);
  if (index->shape[0] == 0)
    return;
  ATEN_XPU_SWITCH_CUDA(value->ctx.device_type, XPU, "Scatter_", {
    ATEN_DTYPE_SWITCH(value->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        impl::Scatter_<XPU, DType, IdType>(index, value, out);
      });
    });
  });
}

196
197
NDArray Repeat(NDArray array, IdArray repeats) {
  NDArray ret;
198
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Repeat", {
199
200
201
202
203
204
205
206
207
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(repeats->dtype, IdType, {
        ret = impl::Repeat<XPU, DType, IdType>(array, repeats);
      });
    });
  });
  return ret;
}

208
209
IdArray Relabel_(const std::vector<IdArray>& arrays) {
  IdArray ret;
210
  ATEN_XPU_SWITCH_CUDA(arrays[0]->ctx.device_type, XPU, "Relabel_", {
211
212
213
214
215
216
217
    ATEN_ID_TYPE_SWITCH(arrays[0]->dtype, IdType, {
      ret = impl::Relabel_<XPU, IdType>(arrays);
    });
  });
  return ret;
}

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
NDArray Concat(const std::vector<IdArray>& arrays) {
  IdArray ret;

  int64_t len = 0, offset = 0;
  for (size_t i = 0; i < arrays.size(); ++i) {
    len += arrays[i]->shape[0];
    CHECK_SAME_DTYPE(arrays[0], arrays[i]);
    CHECK_SAME_CONTEXT(arrays[0], arrays[i]);
  }

  NDArray ret_arr = NDArray::Empty({len},
                                   arrays[0]->dtype,
                                   arrays[0]->ctx);

  auto device = runtime::DeviceAPI::Get(arrays[0]->ctx);
  for (size_t i = 0; i < arrays.size(); ++i) {
    ATEN_DTYPE_SWITCH(arrays[i]->dtype, DType, "array", {
      device->CopyDataFromTo(
        static_cast<DType*>(arrays[i]->data),
        0,
        static_cast<DType*>(ret_arr->data),
        offset,
        arrays[i]->shape[0] * sizeof(DType),
        arrays[i]->ctx,
        ret_arr->ctx,
243
        arrays[i]->dtype);
244
245
246
247
248
249
250
251

        offset += arrays[i]->shape[0] * sizeof(DType);
    });
  }

  return ret_arr;
}

252
253
254
template<typename ValueType>
std::tuple<NDArray, IdArray, IdArray> Pack(NDArray array, ValueType pad_value) {
  std::tuple<NDArray, IdArray, IdArray> ret;
255
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Pack", {
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ret = impl::Pack<XPU, DType>(array, static_cast<DType>(pad_value));
    });
  });
  return ret;
}

template std::tuple<NDArray, IdArray, IdArray> Pack<int32_t>(NDArray, int32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<int64_t>(NDArray, int64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint32_t>(NDArray, uint32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint64_t>(NDArray, uint64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<float>(NDArray, float);
template std::tuple<NDArray, IdArray, IdArray> Pack<double>(NDArray, double);

std::pair<NDArray, IdArray> ConcatSlices(NDArray array, IdArray lengths) {
  std::pair<NDArray, IdArray> ret;
272
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "ConcatSlices", {
273
274
275
276
277
278
279
280
281
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ATEN_ID_TYPE_SWITCH(lengths->dtype, IdType, {
        ret = impl::ConcatSlices<XPU, DType, IdType>(array, lengths);
      });
    });
  });
  return ret;
}

282
283
284
285
286
287
288
289
290
291
IdArray CumSum(IdArray array, bool prepend_zero) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "CumSum", {
    ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
      ret = impl::CumSum<XPU, IdType>(array, prepend_zero);
    });
  });
  return ret;
}

292
293
294
295
296
297
298
299
300
301
IdArray NonZero(NDArray array) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "NonZero", {
    ATEN_ID_TYPE_SWITCH(array->dtype, DType, {
      ret = impl::NonZero<XPU, DType>(array);
    });
  });
  return ret;
}

302
std::pair<IdArray, IdArray> Sort(IdArray array, const int num_bits) {
303
304
305
306
307
308
309
  if (array.NumElements() == 0) {
    IdArray idx = NewIdArray(0, array->ctx, 64);
    return std::make_pair(array, idx);
  }
  std::pair<IdArray, IdArray> ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "Sort", {
    ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
310
      ret = impl::Sort<XPU, IdType>(array, num_bits);
311
312
313
314
315
    });
  });
  return ret;
}

316
317
std::string ToDebugString(NDArray array) {
  std::ostringstream oss;
318
  NDArray a = array.CopyTo(DGLContext{kDGLCPU, 0});
319
320
321
322
323
324
325
326
327
328
329
330
  oss << "array([";
  ATEN_DTYPE_SWITCH(a->dtype, DType, "array", {
    for (int64_t i = 0; i < std::min<int64_t>(a.NumElements(), 10L); ++i) {
      oss << a.Ptr<DType>()[i] << ", ";
    }
  });
  if (a.NumElements() > 10)
    oss << "...";
  oss << "], dtype=" << array->dtype << ", ctx=" << array->ctx << ")";
  return oss.str();
}

331
332
333
///////////////////////// CSR routines //////////////////////////

bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
334
335
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
336
  bool ret = false;
337
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
338
339
340
341
342
343
344
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  NDArray ret;
345
346
  CHECK_SAME_DTYPE(csr.indices, row);
  CHECK_SAME_DTYPE(csr.indices, col);
347
348
  CHECK_SAME_CONTEXT(row, col);
  ATEN_CSR_SWITCH_CUDA_UVA(csr, row, XPU, IdType, "CSRIsNonZero", {
349
350
351
352
353
354
355
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

bool CSRHasDuplicate(CSRMatrix csr) {
  bool ret = false;
356
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRHasDuplicate", {
357
358
359
360
361
362
    ret = impl::CSRHasDuplicate<XPU, IdType>(csr);
  });
  return ret;
}

int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
363
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
364
  int64_t ret = 0;
365
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
366
367
368
369
370
371
372
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray row) {
  NDArray ret;
373
  CHECK_SAME_DTYPE(csr.indices, row);
374
  ATEN_CSR_SWITCH_CUDA_UVA(csr, row, XPU, IdType, "CSRGetRowNNZ", {
375
376
377
378
379
380
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
381
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
382
  NDArray ret;
383
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowColumnIndices", {
384
385
386
387
388
389
    ret = impl::CSRGetRowColumnIndices<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
390
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
391
  NDArray ret;
392
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowData", {
393
    ret = impl::CSRGetRowData<XPU, IdType>(csr, row);
394
395
396
397
  });
  return ret;
}

398
399
400
401
402
403
404
405
406
407
bool CSRIsSorted(CSRMatrix csr) {
  if (csr.indices->shape[0] <= 1)
    return true;
  bool ret = false;
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsSorted", {
    ret = impl::CSRIsSorted<XPU, IdType>(csr);
  });
  return ret;
}

408
409
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
  NDArray ret;
410
411
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
412
413
  CHECK_SAME_CONTEXT(rows, cols);
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRGetData", {
414
    ret = impl::CSRGetData<XPU, IdType>(csr, rows, cols);
415
416
417
418
  });
  return ret;
}

419
420
421
422
423
template <typename DType>
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols, NDArray weights, DType filler) {
  NDArray ret;
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
424
425
426
  CHECK_SAME_CONTEXT(rows, cols);
  CHECK_SAME_CONTEXT(rows, weights);
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRGetData", {
427
428
429
430
431
432
433
434
435
436
    ret = impl::CSRGetData<XPU, IdType, DType>(csr, rows, cols, weights, filler);
  });
  return ret;
}

template NDArray CSRGetData<float>(
    CSRMatrix csr, NDArray rows, NDArray cols, NDArray weights, float filler);
template NDArray CSRGetData<double>(
    CSRMatrix csr, NDArray rows, NDArray cols, NDArray weights, double filler);

437
438
std::vector<NDArray> CSRGetDataAndIndices(
    CSRMatrix csr, NDArray rows, NDArray cols) {
439
440
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
441
  CHECK_SAME_CONTEXT(rows, cols);
442
  std::vector<NDArray> ret;
443
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRGetDataAndIndices", {
444
    ret = impl::CSRGetDataAndIndices<XPU, IdType>(csr, rows, cols);
445
446
447
448
449
450
  });
  return ret;
}

CSRMatrix CSRTranspose(CSRMatrix csr) {
  CSRMatrix ret;
451
452
453
454
  ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRTranspose", {
    ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
      ret = impl::CSRTranspose<XPU, IdType>(csr);
    });
455
456
457
458
459
460
461
  });
  return ret;
}

COOMatrix CSRToCOO(CSRMatrix csr, bool data_as_order) {
  COOMatrix ret;
  if (data_as_order) {
462
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOODataAsOrder", {
463
464
465
466
467
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOODataAsOrder<XPU, IdType>(csr);
      });
    });
  } else {
468
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOO", {
469
470
471
472
473
474
475
476
477
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOO<XPU, IdType>(csr);
      });
    });
  }
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
478
479
480
  CHECK(start >= 0 && start < csr.num_rows) << "Invalid start index: " << start;
  CHECK(end >= 0 && end <= csr.num_rows) << "Invalid end index: " << end;
  CHECK_GE(end, start);
481
  CSRMatrix ret;
482
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
483
    ret = impl::CSRSliceRows<XPU, IdType>(csr, start, end);
484
485
486
487
488
  });
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
489
  CHECK_SAME_DTYPE(csr.indices, rows);
490
  CSRMatrix ret;
491
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRSliceRows", {
492
    ret = impl::CSRSliceRows<XPU, IdType>(csr, rows);
493
494
495
496
497
  });
  return ret;
}

CSRMatrix CSRSliceMatrix(CSRMatrix csr, NDArray rows, NDArray cols) {
498
499
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
500
  CHECK_SAME_CONTEXT(rows, cols);
501
  CSRMatrix ret;
502
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRSliceMatrix", {
503
    ret = impl::CSRSliceMatrix<XPU, IdType>(csr, rows, cols);
504
505
506
507
  });
  return ret;
}

508
void CSRSort_(CSRMatrix* csr) {
509
510
511
  if (csr->sorted)
    return;
  ATEN_CSR_SWITCH_CUDA(*csr, XPU, IdType, "CSRSort_", {
512
    impl::CSRSort_<XPU, IdType>(csr);
Da Zheng's avatar
Da Zheng committed
513
514
515
  });
}

516
517
std::pair<CSRMatrix, NDArray> CSRSortByTag(
    const CSRMatrix &csr, IdArray tag, int64_t num_tags) {
518
519
  CHECK_EQ(csr.indices->shape[0], tag->shape[0])
      << "The length of the tag array should be equal to the number of non-zero data.";
520
521
522
523
524
525
526
527
528
529
530
  CHECK_SAME_CONTEXT(csr.indices, tag);
  CHECK_INT(tag, "tag");
  std::pair<CSRMatrix, NDArray> ret;
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRSortByTag", {
    ATEN_ID_TYPE_SWITCH(tag->dtype, TagType, {
      ret = impl::CSRSortByTag<XPU, IdType, TagType>(csr, tag, num_tags);
    });
  });
  return ret;
}

Da Zheng's avatar
Da Zheng committed
531
532
533
534
535
536
537
538
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  CSRMatrix ret;
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRReorder", {
    ret = impl::CSRReorder<XPU, IdType>(csr, new_row_ids, new_col_ids);
  });
  return ret;
}

539
540
CSRMatrix CSRRemove(CSRMatrix csr, IdArray entries) {
  CSRMatrix ret;
541
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRRemove", {
542
543
544
545
546
    ret = impl::CSRRemove<XPU, IdType>(csr, entries);
  });
  return ret;
}

547
COOMatrix CSRRowWiseSampling(
548
    CSRMatrix mat, IdArray rows, int64_t num_samples, NDArray prob_or_mask, bool replace) {
549
  COOMatrix ret;
550
  if (IsNullArray(prob_or_mask)) {
551
    ATEN_CSR_SWITCH_CUDA_UVA(mat, rows, XPU, IdType, "CSRRowWiseSamplingUniform", {
552
      ret = impl::CSRRowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
553
554
    });
  } else {
555
556
    // prob_or_mask is pinned and rows on GPU is valid
    CHECK_VALID_CONTEXT(prob_or_mask, rows);
557
    ATEN_CSR_SWITCH_CUDA_UVA(mat, rows, XPU, IdType, "CSRRowWiseSampling", {
558
559
560
      CHECK(!(prob_or_mask->dtype.bits == 8 && XPU == kDGLCUDA)) <<
        "GPU sampling with masks is currently not supported yet.";
      ATEN_FLOAT_INT8_UINT8_TYPE_SWITCH(
561
          prob_or_mask->dtype, FloatType, "probability or mask", {
562
        ret = impl::CSRRowWiseSampling<XPU, IdType, FloatType>(
563
            mat, rows, num_samples, prob_or_mask, replace);
564
      });
565
566
    });
  }
567
568
569
  return ret;
}

570
COOMatrix CSRRowWisePerEtypeSampling(
571
572
573
    CSRMatrix mat, IdArray rows, const std::vector<int64_t>& eid2etype_offset,
    const std::vector<int64_t>& num_samples, const std::vector<NDArray>& prob_or_mask,
    bool replace, bool rowwise_etype_sorted) {
574
  COOMatrix ret;
575
  CHECK(prob_or_mask.size() > 0) << "probability or mask array is empty";
576
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWisePerEtypeSampling", {
577
    if (std::all_of(prob_or_mask.begin(), prob_or_mask.end(), IsNullArray)) {
578
      ret = impl::CSRRowWisePerEtypeSamplingUniform<XPU, IdType>(
579
            mat, rows, eid2etype_offset, num_samples, replace, rowwise_etype_sorted);
580
    } else {
581
582
583
584
      ATEN_FLOAT_INT8_UINT8_TYPE_SWITCH(
          prob_or_mask[0]->dtype, DType, "probability or mask", {
        ret = impl::CSRRowWisePerEtypeSampling<XPU, IdType, DType>(
            mat, rows, eid2etype_offset, num_samples, prob_or_mask, replace, rowwise_etype_sorted);
585
586
587
588
589
590
591
      });
    }
  });
  return ret;
}


592
COOMatrix CSRRowWiseTopk(
593
    CSRMatrix mat, IdArray rows, int64_t k, NDArray weight, bool ascending) {
594
  COOMatrix ret;
595
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseTopk", {
596
597
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::CSRRowWiseTopk<XPU, IdType, DType>(
598
599
600
601
602
603
          mat, rows, k, weight, ascending);
    });
  });
  return ret;
}

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
COOMatrix CSRRowWiseSamplingBiased(
    CSRMatrix mat,
    IdArray rows,
    int64_t num_samples,
    NDArray tag_offset,
    FloatArray bias,
    bool replace) {
  COOMatrix ret;
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseSamplingBiased", {
    ATEN_FLOAT_TYPE_SWITCH(bias->dtype, FloatType, "bias", {
        ret = impl::CSRRowWiseSamplingBiased<XPU, IdType, FloatType>(
          mat, rows, num_samples, tag_offset, bias, replace);
    });
  });
  return ret;
}

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
std::pair<IdArray, IdArray> CSRGlobalUniformNegativeSampling(
    const CSRMatrix& csr,
    int64_t num_samples,
    int num_trials,
    bool exclude_self_loops,
    bool replace,
    double redundancy) {
  CHECK_GT(num_samples, 0) << "Number of samples must be positive";
  CHECK_GT(num_trials, 0) << "Number of sampling trials must be positive";
  std::pair<IdArray, IdArray> result;
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGlobalUniformNegativeSampling", {
    result = impl::CSRGlobalUniformNegativeSampling<XPU, IdType>(
        csr, num_samples, num_trials, exclude_self_loops, replace, redundancy);
  });
  return result;
}

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

CSRMatrix UnionCsr(const std::vector<CSRMatrix>& csrs) {
  CSRMatrix ret;
  CHECK_GT(csrs.size(), 1) << "UnionCsr creates a union of multiple CSRMatrixes";
  // sanity check
  for (size_t i = 1; i < csrs.size(); ++i) {
    CHECK_EQ(csrs[0].num_rows, csrs[i].num_rows) <<
      "UnionCsr requires both CSRMatrix have same number of rows";
    CHECK_EQ(csrs[0].num_cols, csrs[i].num_cols) <<
      "UnionCsr requires both CSRMatrix have same number of cols";
    CHECK_SAME_CONTEXT(csrs[0].indptr, csrs[i].indptr);
    CHECK_SAME_DTYPE(csrs[0].indptr, csrs[i].indptr);
  }

  ATEN_CSR_SWITCH(csrs[0], XPU, IdType, "UnionCsr", {
    ret = impl::UnionCsr<XPU, IdType>(csrs);
  });
  return ret;
}


659
660
661
662
663
664
665
666
667
668
669
std::tuple<CSRMatrix, IdArray, IdArray>
CSRToSimple(const CSRMatrix& csr) {
  std::tuple<CSRMatrix, IdArray, IdArray> ret;

  CSRMatrix sorted_csr = (CSRIsSorted(csr)) ? csr : CSRSort(csr);
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRToSimple", {
    ret = impl::CSRToSimple<XPU, IdType>(sorted_csr);
  });
  return ret;
}

670
671
///////////////////////// COO routines //////////////////////////

672
673
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
  bool ret = false;
674
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
675
676
677
678
679
680
681
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
  NDArray ret;
682
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
683
684
685
686
687
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

688
689
bool COOHasDuplicate(COOMatrix coo) {
  bool ret = false;
690
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOHasDuplicate", {
691
692
693
694
695
    ret = impl::COOHasDuplicate<XPU, IdType>(coo);
  });
  return ret;
}

696
697
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
  int64_t ret = 0;
698
  ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOGetRowNNZ", {
699
700
701
702
703
704
705
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

NDArray COOGetRowNNZ(COOMatrix coo, NDArray row) {
  NDArray ret;
706
  ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOGetRowNNZ", {
707
708
709
710
711
712
713
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

std::pair<NDArray, NDArray> COOGetRowDataAndIndices(COOMatrix coo, int64_t row) {
  std::pair<NDArray, NDArray> ret;
714
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowDataAndIndices", {
715
    ret = impl::COOGetRowDataAndIndices<XPU, IdType>(coo, row);
716
717
718
719
720
721
722
  });
  return ret;
}

std::vector<NDArray> COOGetDataAndIndices(
    COOMatrix coo, NDArray rows, NDArray cols) {
  std::vector<NDArray> ret;
723
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetDataAndIndices", {
724
    ret = impl::COOGetDataAndIndices<XPU, IdType>(coo, rows, cols);
725
726
727
728
  });
  return ret;
}

729
730
731
732
733
734
735
736
NDArray COOGetData(COOMatrix coo, NDArray rows, NDArray cols) {
  NDArray ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetData", {
    ret = impl::COOGetData<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

737
COOMatrix COOTranspose(COOMatrix coo) {
738
  return COOMatrix(coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data);
739
740
}

741
742
CSRMatrix COOToCSR(COOMatrix coo) {
  CSRMatrix ret;
743
744
745
746
  ATEN_XPU_SWITCH_CUDA(coo.row->ctx.device_type, XPU, "COOToCSR", {
    ATEN_ID_TYPE_SWITCH(coo.row->dtype, IdType, {
      ret = impl::COOToCSR<XPU, IdType>(coo);
    });
747
748
749
750
  });
  return ret;
}

751
752
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
  COOMatrix ret;
753
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
754
    ret = impl::COOSliceRows<XPU, IdType>(coo, start, end);
755
756
757
758
759
760
  });
  return ret;
}

COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
  COOMatrix ret;
761
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
762
    ret = impl::COOSliceRows<XPU, IdType>(coo, rows);
763
764
765
766
767
768
  });
  return ret;
}

COOMatrix COOSliceMatrix(COOMatrix coo, NDArray rows, NDArray cols) {
  COOMatrix ret;
769
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceMatrix", {
770
771
772
773
774
    ret = impl::COOSliceMatrix<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

775
776
777
778
779
780
void COOSort_(COOMatrix* mat, bool sort_column) {
  if ((mat->row_sorted && !sort_column) || mat->col_sorted)
    return;
  ATEN_XPU_SWITCH_CUDA(mat->row->ctx.device_type, XPU, "COOSort_", {
    ATEN_ID_TYPE_SWITCH(mat->row->dtype, IdType, {
      impl::COOSort_<XPU, IdType>(mat, sort_column);
781
    });
782
  });
783
784
785
786
787
788
789
790
791
}

std::pair<bool, bool> COOIsSorted(COOMatrix coo) {
  if (coo.row->shape[0] <= 1)
    return {true, true};
  std::pair<bool, bool> ret;
  ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOIsSorted", {
    ret = impl::COOIsSorted<XPU, IdType>(coo);
  });
792
793
794
  return ret;
}

795
796
797
798
799
800
801
802
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOReorder", {
    ret = impl::COOReorder<XPU, IdType>(coo, new_row_ids, new_col_ids);
  });
  return ret;
}

803
804
COOMatrix COORemove(COOMatrix coo, IdArray entries) {
  COOMatrix ret;
805
  ATEN_COO_SWITCH(coo, XPU, IdType, "COORemove", {
806
807
808
809
810
    ret = impl::COORemove<XPU, IdType>(coo, entries);
  });
  return ret;
}

811
COOMatrix COORowWiseSampling(
812
    COOMatrix mat, IdArray rows, int64_t num_samples, NDArray prob_or_mask, bool replace) {
813
  COOMatrix ret;
814
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseSampling", {
815
    if (IsNullArray(prob_or_mask)) {
816
817
      ret = impl::COORowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
    } else {
818
      ATEN_FLOAT_INT8_UINT8_TYPE_SWITCH(
819
          prob_or_mask->dtype, DType, "probability or mask", {
820
821
        ret = impl::COORowWiseSampling<XPU, IdType, DType>(
            mat, rows, num_samples, prob_or_mask, replace);
822
823
824
825
826
827
      });
    }
  });
  return ret;
}

828
COOMatrix COORowWisePerEtypeSampling(
829
830
831
    COOMatrix mat, IdArray rows, const std::vector<int64_t>& eid2etype_offset,
    const std::vector<int64_t>& num_samples, const std::vector<NDArray>& prob_or_mask,
    bool replace) {
832
  COOMatrix ret;
833
  CHECK(prob_or_mask.size() > 0) << "probability or mask array is empty";
834
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWisePerEtypeSampling", {
835
    if (std::all_of(prob_or_mask.begin(), prob_or_mask.end(), IsNullArray)) {
836
      ret = impl::COORowWisePerEtypeSamplingUniform<XPU, IdType>(
837
            mat, rows, eid2etype_offset, num_samples, replace);
838
    } else {
839
840
841
842
      ATEN_FLOAT_INT8_UINT8_TYPE_SWITCH(
          prob_or_mask[0]->dtype, DType, "probability or mask", {
        ret = impl::COORowWisePerEtypeSampling<XPU, IdType, DType>(
            mat, rows, eid2etype_offset, num_samples, prob_or_mask, replace);
843
844
845
846
847
848
      });
    }
  });
  return ret;
}

849
850
851
COOMatrix COORowWiseTopk(
    COOMatrix mat, IdArray rows, int64_t k, FloatArray weight, bool ascending) {
  COOMatrix ret;
852
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseTopk", {
853
854
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::COORowWiseTopk<XPU, IdType, DType>(
855
856
          mat, rows, k, weight, ascending);
    });
857
858
859
860
  });
  return ret;
}

861
862
std::pair<COOMatrix, IdArray> COOCoalesce(COOMatrix coo) {
  std::pair<COOMatrix, IdArray> ret;
863
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOCoalesce", {
864
865
866
867
868
    ret = impl::COOCoalesce<XPU, IdType>(coo);
  });
  return ret;
}

869
870
871
872
873
874
875
876
877
878
COOMatrix DisjointUnionCoo(const std::vector<COOMatrix>& coos) {
  COOMatrix ret;
  ATEN_XPU_SWITCH_CUDA(coos[0].row->ctx.device_type, XPU, "DisjointUnionCoo", {
    ATEN_ID_TYPE_SWITCH(coos[0].row->dtype, IdType, {
      ret = impl::DisjointUnionCoo<XPU, IdType>(coos);
    });
  });
  return ret;
}

879
880
881
882
883
884
885
COOMatrix COOLineGraph(const COOMatrix &coo, bool backtracking) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOLineGraph", {
    ret = impl::COOLineGraph<XPU, IdType>(coo, backtracking);
  });
  return ret;
}
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

COOMatrix UnionCoo(const std::vector<COOMatrix>& coos) {
  COOMatrix ret;
  CHECK_GT(coos.size(), 1) << "UnionCoo creates a union of multiple COOMatrixes";
  // sanity check
  for (size_t i = 1; i < coos.size(); ++i) {
    CHECK_EQ(coos[0].num_rows, coos[i].num_rows) <<
      "UnionCoo requires both COOMatrix have same number of rows";
    CHECK_EQ(coos[0].num_cols, coos[i].num_cols) <<
      "UnionCoo requires both COOMatrix have same number of cols";
    CHECK_SAME_CONTEXT(coos[0].row, coos[i].row);
    CHECK_SAME_DTYPE(coos[0].row, coos[i].row);
  }

  // we assume the number of coos is not large in common cases
  std::vector<IdArray> coo_row;
  std::vector<IdArray> coo_col;
  bool has_data = false;

  for (size_t i = 0; i < coos.size(); ++i) {
    coo_row.push_back(coos[i].row);
    coo_col.push_back(coos[i].col);
    has_data |= COOHasData(coos[i]);
  }

  IdArray row = Concat(coo_row);
  IdArray col = Concat(coo_col);
  IdArray data = NullArray();

  if (has_data) {
    std::vector<IdArray> eid_data;
    eid_data.push_back(COOHasData(coos[0]) ?
                       coos[0].data :
                       Range(0,
                             coos[0].row->shape[0],
                             coos[0].row->dtype.bits,
                             coos[0].row->ctx));
    int64_t num_edges = coos[0].row->shape[0];
    for (size_t i = 1; i < coos.size(); ++i) {
      eid_data.push_back(COOHasData(coos[i]) ?
                         coos[i].data + num_edges :
                         Range(num_edges,
                               num_edges + coos[i].row->shape[0],
                               coos[i].row->dtype.bits,
                               coos[i].row->ctx));
      num_edges += coos[i].row->shape[0];
    }

    data = Concat(eid_data);
  }

  return COOMatrix(
    coos[0].num_rows,
    coos[0].num_cols,
    row,
    col,
    data,
    false,
    false);
}


948
949
950
951
952
953
954
955
956
957
958
std::tuple<COOMatrix, IdArray, IdArray>
COOToSimple(const COOMatrix& coo) {
  // coo column sorted
  const COOMatrix sorted_coo = COOSort(coo, true);
  const IdArray eids_shuffled = COOHasData(sorted_coo) ?
    sorted_coo.data :
    Range(0, sorted_coo.row->shape[0], sorted_coo.row->dtype.bits, sorted_coo.row->ctx);
  const auto &coalesced_result = COOCoalesce(sorted_coo);
  const COOMatrix &coalesced_adj = coalesced_result.first;
  const IdArray &count = coalesced_result.second;

959
  /**
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
   * eids_shuffled actually already contains the mapping from old edge space to the
   * new one:
   *
   * * eids_shuffled[0:count[0]] indicates the original edge IDs that coalesced into new
   *   edge #0.
   * * eids_shuffled[count[0]:count[0] + count[1]] indicates those that coalesced into
   *   new edge #1.
   * * eids_shuffled[count[0] + count[1]:count[0] + count[1] + count[2]] indicates those
   *   that coalesced into new edge #2.
   * * etc.
   *
   * Here, we need to translate eids_shuffled to an array "eids_remapped" such that
   * eids_remapped[i] indicates the new edge ID the old edge #i is mapped to.  The
   * translation can simply be achieved by (in numpy code):
   *
   *     new_eid_for_eids_shuffled = np.range(len(count)).repeat(count)
   *     eids_remapped = np.zeros_like(new_eid_for_eids_shuffled)
   *     eids_remapped[eids_shuffled] = new_eid_for_eids_shuffled
   */
  const IdArray new_eids = Range(
    0, coalesced_adj.row->shape[0], coalesced_adj.row->dtype.bits, coalesced_adj.row->ctx);
  const IdArray eids_remapped = Scatter(Repeat(new_eids, count), eids_shuffled);

  COOMatrix ret = COOMatrix(
    coalesced_adj.num_rows,
    coalesced_adj.num_cols,
    coalesced_adj.row,
    coalesced_adj.col,
    NullArray(),
    true,
    true);
  return std::make_tuple(ret, count, eids_remapped);
}

994
///////////////////////// Graph Traverse routines //////////////////////////
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
Frontiers BFSNodesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSNodesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers BFSEdgesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSEdgesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSEdgesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers TopologicalNodesFrontiers(const CSRMatrix& csr) {
  Frontiers ret;
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(csr.indptr->ctx.device_type, XPU, "TopologicalNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(csr.indices->dtype, IdType, {
      ret = impl::TopologicalNodesFrontiers<XPU, IdType>(csr);
    });
  });
  return ret;
}

Frontiers DGLDFSEdges(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSEdges<XPU, IdType>(csr, source);
    });
  });
  return ret;
}
1054

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
Frontiers DGLDFSLabeledEdges(const CSRMatrix& csr,
                             IdArray source,
                             const bool has_reverse_edge,
                             const bool has_nontree_edge,
                             const bool return_labels) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSLabeledEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSLabeledEdges<XPU, IdType>(csr,
                                                  source,
                                                  has_reverse_edge,
                                                  has_nontree_edge,
                                                  return_labels);
    });
  });
  return ret;
}

1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
///////////////////////// C APIs /////////////////////////
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFormat")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->format;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumRows")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_rows;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumCols")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_cols;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetIndices")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    const int64_t i = args[1];
    *rv = spmat->indices[i];
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFlags")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    List<Value> flags;
    for (bool flg : spmat->flags) {
      flags.push_back(Value(MakeValue(flg)));
    }
    *rv = flags;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLCreateSparseMatrix")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const int32_t format = args[0];
    const int64_t nrows = args[1];
    const int64_t ncols = args[2];
    const List<Value> indices = args[3];
    const List<Value> flags = args[4];
    std::shared_ptr<SparseMatrix> spmat(new SparseMatrix(
          format, nrows, ncols,
          ListValueToVector<IdArray>(indices),
          ListValueToVector<bool>(flags)));
    *rv = SparseMatrixRef(spmat);
  });

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLExistSharedMemArray")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string name = args[0];
#ifndef _WIN32
    *rv = SharedMemory::Exist(name);
#else
    *rv = false;
#endif  // _WIN32
  });

1140
1141
1142
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLArrayCastToSigned")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray array = args[0];
1143
    CHECK_EQ(array->dtype.code, kDGLUInt);
1144
    std::vector<int64_t> shape(array->shape, array->shape + array->ndim);
1145
1146
    DGLDataType dtype = array->dtype;
    dtype.code = kDGLInt;
1147
1148
1149
    *rv = array.CreateView(shape, dtype, 0);
  });

1150
1151
}  // namespace aten
}  // namespace dgl
1152
1153
1154
1155

std::ostream& operator << (std::ostream& os, dgl::runtime::NDArray array) {
  return os << dgl::aten::ToDebugString(array);
}