array.cc 36 KB
Newer Older
1
/*!
2
 *  Copyright (c) 2019-2021 by Contributors
3
4
5
6
 * \file array/array.cc
 * \brief DGL array utilities implementation
 */
#include <dgl/array.h>
7
#include <dgl/graph_traversal.h>
8
9
#include <dgl/packed_func_ext.h>
#include <dgl/runtime/container.h>
10
#include <dgl/runtime/shared_mem.h>
11
12
#include <dgl/runtime/device_api.h>
#include <sstream>
13
14
15
16
#include "../c_api_common.h"
#include "./array_op.h"
#include "./arith.h"

17
using namespace dgl::runtime;
18

19
namespace dgl {
20
21
22
23
24
25
26
27
28
29
30
31
32
33
namespace aten {

IdArray NewIdArray(int64_t length, DLContext ctx, uint8_t nbits) {
  return IdArray::Empty({length}, DLDataType{kDLInt, nbits, 1}, ctx);
}

IdArray Clone(IdArray arr) {
  IdArray ret = NewIdArray(arr->shape[0], arr->ctx, arr->dtype.bits);
  ret.CopyFrom(arr);
  return ret;
}

IdArray Range(int64_t low, int64_t high, uint8_t nbits, DLContext ctx) {
  IdArray ret;
34
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Range", {
35
36
37
38
39
40
41
42
43
44
45
46
47
    if (nbits == 32) {
      ret = impl::Range<XPU, int32_t>(low, high, ctx);
    } else if (nbits == 64) {
      ret = impl::Range<XPU, int64_t>(low, high, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

IdArray Full(int64_t val, int64_t length, uint8_t nbits, DLContext ctx) {
  IdArray ret;
48
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Full", {
49
50
51
52
53
54
55
56
57
58
59
    if (nbits == 32) {
      ret = impl::Full<XPU, int32_t>(val, length, ctx);
    } else if (nbits == 64) {
      ret = impl::Full<XPU, int64_t>(val, length, ctx);
    } else {
      LOG(FATAL) << "Only int32 or int64 is supported.";
    }
  });
  return ret;
}

60
61
62
63
64
65
66
67
68
69
70
71
72
73
template <typename DType>
NDArray Full(DType val, int64_t length, DLContext ctx) {
  NDArray ret;
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Full", {
    ret = impl::Full<XPU, DType>(val, length, ctx);
  });
  return ret;
}

template NDArray Full<int32_t>(int32_t val, int64_t length, DLContext ctx);
template NDArray Full<int64_t>(int64_t val, int64_t length, DLContext ctx);
template NDArray Full<float>(float val, int64_t length, DLContext ctx);
template NDArray Full<double>(double val, int64_t length, DLContext ctx);

74
IdArray AsNumBits(IdArray arr, uint8_t bits) {
75
76
77
78
79
  CHECK(bits == 32 || bits == 64)
    << "Invalid ID type. Must be int32 or int64, but got int"
    << static_cast<int>(bits) << ".";
  if (arr->dtype.bits == bits)
    return arr;
80
81
  if (arr.NumElements() == 0)
    return NewIdArray(arr->shape[0], arr->ctx, bits);
82
  IdArray ret;
83
  ATEN_XPU_SWITCH_CUDA(arr->ctx.device_type, XPU, "AsNumBits", {
84
85
86
87
88
89
90
91
92
    ATEN_ID_TYPE_SWITCH(arr->dtype, IdType, {
      ret = impl::AsNumBits<XPU, IdType>(arr, bits);
    });
  });
  return ret;
}

IdArray HStack(IdArray lhs, IdArray rhs) {
  IdArray ret;
93
94
  CHECK_SAME_CONTEXT(lhs, rhs);
  CHECK_SAME_DTYPE(lhs, rhs);
95
96
97
98
99
100
101
102
103
104
105
106
107
108
  CHECK_EQ(lhs->shape[0], rhs->shape[0]);
  auto device = runtime::DeviceAPI::Get(lhs->ctx);
  const auto& ctx = lhs->ctx;
  ATEN_ID_TYPE_SWITCH(lhs->dtype, IdType, {
    const int64_t len = lhs->shape[0];
    ret = NewIdArray(2 * len, lhs->ctx, lhs->dtype.bits);
    device->CopyDataFromTo(lhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), 0,
                           len * sizeof(IdType),
                           ctx, ctx, lhs->dtype, nullptr);
    device->CopyDataFromTo(rhs.Ptr<IdType>(), 0,
                           ret.Ptr<IdType>(), len * sizeof(IdType),
                           len * sizeof(IdType),
                           ctx, ctx, lhs->dtype, nullptr);
Jinjing Zhou's avatar
Jinjing Zhou committed
109
110
111
112
  });
  return ret;
}

113
114
NDArray IndexSelect(NDArray array, IdArray index) {
  NDArray ret;
115
  CHECK_GE(array->ndim, 1) << "Only support array with at least 1 dimension";
116
  CHECK_EQ(index->ndim, 1) << "Index array must be an 1D array.";
117
118
119
120
  // if array is not pinned, index has the same context as array
  // if array is pinned, op dispatching depends on the context of index
  CHECK_VALID_CONTEXT(array, index);
  ATEN_XPU_SWITCH_CUDA(index->ctx.device_type, XPU, "IndexSelect", {
121
122
123
124
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        ret = impl::IndexSelect<XPU, DType, IdType>(array, index);
      });
125
126
127
128
129
    });
  });
  return ret;
}

130
template<typename ValueType>
131
ValueType IndexSelect(NDArray array, int64_t index) {
132
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
133
134
  CHECK(index >= 0 && index < array.NumElements())
    << "Index " << index << " is out of bound.";
135
  ValueType ret = 0;
136
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
137
138
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ret = impl::IndexSelect<XPU, DType>(array, index);
139
140
141
142
    });
  });
  return ret;
}
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
template int32_t IndexSelect<int32_t>(NDArray array, int64_t index);
template int64_t IndexSelect<int64_t>(NDArray array, int64_t index);
template uint32_t IndexSelect<uint32_t>(NDArray array, int64_t index);
template uint64_t IndexSelect<uint64_t>(NDArray array, int64_t index);
template float IndexSelect<float>(NDArray array, int64_t index);
template double IndexSelect<double>(NDArray array, int64_t index);

NDArray IndexSelect(NDArray array, int64_t start, int64_t end) {
  CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
  CHECK(start >= 0 && start < array.NumElements())
    << "Index " << start << " is out of bound.";
  CHECK(end >= 0 && end <= array.NumElements())
    << "Index " << end << " is out of bound.";
  CHECK_LE(start, end);
  auto device = runtime::DeviceAPI::Get(array->ctx);
  const int64_t len = end - start;
  NDArray ret = NDArray::Empty({len}, array->dtype, array->ctx);
  ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
    device->CopyDataFromTo(array->data, start * sizeof(DType),
                           ret->data, 0, len * sizeof(DType),
                           array->ctx, ret->ctx, array->dtype, nullptr);
  });
  return ret;
}
167

168
169
NDArray Scatter(NDArray array, IdArray indices) {
  NDArray ret;
170
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Scatter", {
171
172
173
174
175
176
177
178
179
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(indices->dtype, IdType, {
        ret = impl::Scatter<XPU, DType, IdType>(array, indices);
      });
    });
  });
  return ret;
}

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
void Scatter_(IdArray index, NDArray value, NDArray out) {
  CHECK_SAME_DTYPE(value, out);
  CHECK_SAME_CONTEXT(index, value);
  CHECK_SAME_CONTEXT(index, out);
  CHECK_EQ(value->shape[0], index->shape[0]);
  if (index->shape[0] == 0)
    return;
  ATEN_XPU_SWITCH_CUDA(value->ctx.device_type, XPU, "Scatter_", {
    ATEN_DTYPE_SWITCH(value->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
        impl::Scatter_<XPU, DType, IdType>(index, value, out);
      });
    });
  });
}

196
197
NDArray Repeat(NDArray array, IdArray repeats) {
  NDArray ret;
198
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Repeat", {
199
200
201
202
203
204
205
206
207
    ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
      ATEN_ID_TYPE_SWITCH(repeats->dtype, IdType, {
        ret = impl::Repeat<XPU, DType, IdType>(array, repeats);
      });
    });
  });
  return ret;
}

208
209
IdArray Relabel_(const std::vector<IdArray>& arrays) {
  IdArray ret;
210
  ATEN_XPU_SWITCH_CUDA(arrays[0]->ctx.device_type, XPU, "Relabel_", {
211
212
213
214
215
216
217
    ATEN_ID_TYPE_SWITCH(arrays[0]->dtype, IdType, {
      ret = impl::Relabel_<XPU, IdType>(arrays);
    });
  });
  return ret;
}

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
NDArray Concat(const std::vector<IdArray>& arrays) {
  IdArray ret;

  int64_t len = 0, offset = 0;
  for (size_t i = 0; i < arrays.size(); ++i) {
    len += arrays[i]->shape[0];
    CHECK_SAME_DTYPE(arrays[0], arrays[i]);
    CHECK_SAME_CONTEXT(arrays[0], arrays[i]);
  }

  NDArray ret_arr = NDArray::Empty({len},
                                   arrays[0]->dtype,
                                   arrays[0]->ctx);

  auto device = runtime::DeviceAPI::Get(arrays[0]->ctx);
  for (size_t i = 0; i < arrays.size(); ++i) {
    ATEN_DTYPE_SWITCH(arrays[i]->dtype, DType, "array", {
      device->CopyDataFromTo(
        static_cast<DType*>(arrays[i]->data),
        0,
        static_cast<DType*>(ret_arr->data),
        offset,
        arrays[i]->shape[0] * sizeof(DType),
        arrays[i]->ctx,
        ret_arr->ctx,
        arrays[i]->dtype,
        nullptr);

        offset += arrays[i]->shape[0] * sizeof(DType);
    });
  }

  return ret_arr;
}

253
254
255
template<typename ValueType>
std::tuple<NDArray, IdArray, IdArray> Pack(NDArray array, ValueType pad_value) {
  std::tuple<NDArray, IdArray, IdArray> ret;
256
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Pack", {
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ret = impl::Pack<XPU, DType>(array, static_cast<DType>(pad_value));
    });
  });
  return ret;
}

template std::tuple<NDArray, IdArray, IdArray> Pack<int32_t>(NDArray, int32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<int64_t>(NDArray, int64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint32_t>(NDArray, uint32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint64_t>(NDArray, uint64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<float>(NDArray, float);
template std::tuple<NDArray, IdArray, IdArray> Pack<double>(NDArray, double);

std::pair<NDArray, IdArray> ConcatSlices(NDArray array, IdArray lengths) {
  std::pair<NDArray, IdArray> ret;
273
  ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "ConcatSlices", {
274
275
276
277
278
279
280
281
282
    ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
      ATEN_ID_TYPE_SWITCH(lengths->dtype, IdType, {
        ret = impl::ConcatSlices<XPU, DType, IdType>(array, lengths);
      });
    });
  });
  return ret;
}

283
284
285
286
287
288
289
290
291
292
IdArray CumSum(IdArray array, bool prepend_zero) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "CumSum", {
    ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
      ret = impl::CumSum<XPU, IdType>(array, prepend_zero);
    });
  });
  return ret;
}

293
294
295
296
297
298
299
300
301
302
IdArray NonZero(NDArray array) {
  IdArray ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "NonZero", {
    ATEN_ID_TYPE_SWITCH(array->dtype, DType, {
      ret = impl::NonZero<XPU, DType>(array);
    });
  });
  return ret;
}

303
std::pair<IdArray, IdArray> Sort(IdArray array, const int num_bits) {
304
305
306
307
308
309
310
  if (array.NumElements() == 0) {
    IdArray idx = NewIdArray(0, array->ctx, 64);
    return std::make_pair(array, idx);
  }
  std::pair<IdArray, IdArray> ret;
  ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "Sort", {
    ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
311
      ret = impl::Sort<XPU, IdType>(array, num_bits);
312
313
314
315
316
    });
  });
  return ret;
}

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
std::string ToDebugString(NDArray array) {
  std::ostringstream oss;
  NDArray a = array.CopyTo(DLContext{kDLCPU, 0});
  oss << "array([";
  ATEN_DTYPE_SWITCH(a->dtype, DType, "array", {
    for (int64_t i = 0; i < std::min<int64_t>(a.NumElements(), 10L); ++i) {
      oss << a.Ptr<DType>()[i] << ", ";
    }
  });
  if (a.NumElements() > 10)
    oss << "...";
  oss << "], dtype=" << array->dtype << ", ctx=" << array->ctx << ")";
  return oss.str();
}

332
333
334
///////////////////////// CSR routines //////////////////////////

bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
335
336
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
337
  bool ret = false;
338
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
339
340
341
342
343
344
345
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
  NDArray ret;
346
347
  CHECK_SAME_DTYPE(csr.indices, row);
  CHECK_SAME_DTYPE(csr.indices, col);
348
349
  CHECK_SAME_CONTEXT(row, col);
  ATEN_CSR_SWITCH_CUDA_UVA(csr, row, XPU, IdType, "CSRIsNonZero", {
350
351
352
353
354
355
356
    ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
  });
  return ret;
}

bool CSRHasDuplicate(CSRMatrix csr) {
  bool ret = false;
357
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRHasDuplicate", {
358
359
360
361
362
363
    ret = impl::CSRHasDuplicate<XPU, IdType>(csr);
  });
  return ret;
}

int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
364
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
365
  int64_t ret = 0;
366
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
367
368
369
370
371
372
373
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray row) {
  NDArray ret;
374
  CHECK_SAME_DTYPE(csr.indices, row);
375
  ATEN_CSR_SWITCH_CUDA_UVA(csr, row, XPU, IdType, "CSRGetRowNNZ", {
376
377
378
379
380
381
    ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
382
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
383
  NDArray ret;
384
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowColumnIndices", {
385
386
387
388
389
390
    ret = impl::CSRGetRowColumnIndices<XPU, IdType>(csr, row);
  });
  return ret;
}

NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
391
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
392
  NDArray ret;
393
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowData", {
394
    ret = impl::CSRGetRowData<XPU, IdType>(csr, row);
395
396
397
398
  });
  return ret;
}

399
400
401
402
403
404
405
406
407
408
bool CSRIsSorted(CSRMatrix csr) {
  if (csr.indices->shape[0] <= 1)
    return true;
  bool ret = false;
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsSorted", {
    ret = impl::CSRIsSorted<XPU, IdType>(csr);
  });
  return ret;
}

409
410
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
  NDArray ret;
411
412
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
413
414
  CHECK_SAME_CONTEXT(rows, cols);
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRGetData", {
415
    ret = impl::CSRGetData<XPU, IdType>(csr, rows, cols);
416
417
418
419
  });
  return ret;
}

420
421
422
423
424
template <typename DType>
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols, NDArray weights, DType filler) {
  NDArray ret;
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
425
426
427
  CHECK_SAME_CONTEXT(rows, cols);
  CHECK_SAME_CONTEXT(rows, weights);
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRGetData", {
428
429
430
431
432
433
434
435
436
437
    ret = impl::CSRGetData<XPU, IdType, DType>(csr, rows, cols, weights, filler);
  });
  return ret;
}

template NDArray CSRGetData<float>(
    CSRMatrix csr, NDArray rows, NDArray cols, NDArray weights, float filler);
template NDArray CSRGetData<double>(
    CSRMatrix csr, NDArray rows, NDArray cols, NDArray weights, double filler);

438
439
std::vector<NDArray> CSRGetDataAndIndices(
    CSRMatrix csr, NDArray rows, NDArray cols) {
440
441
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
442
  CHECK_SAME_CONTEXT(rows, cols);
443
  std::vector<NDArray> ret;
444
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRGetDataAndIndices", {
445
    ret = impl::CSRGetDataAndIndices<XPU, IdType>(csr, rows, cols);
446
447
448
449
450
451
  });
  return ret;
}

CSRMatrix CSRTranspose(CSRMatrix csr) {
  CSRMatrix ret;
452
453
454
455
  ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRTranspose", {
    ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
      ret = impl::CSRTranspose<XPU, IdType>(csr);
    });
456
457
458
459
460
461
462
  });
  return ret;
}

COOMatrix CSRToCOO(CSRMatrix csr, bool data_as_order) {
  COOMatrix ret;
  if (data_as_order) {
463
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOODataAsOrder", {
464
465
466
467
468
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOODataAsOrder<XPU, IdType>(csr);
      });
    });
  } else {
469
    ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOO", {
470
471
472
473
474
475
476
477
478
      ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
        ret = impl::CSRToCOO<XPU, IdType>(csr);
      });
    });
  }
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
479
480
481
  CHECK(start >= 0 && start < csr.num_rows) << "Invalid start index: " << start;
  CHECK(end >= 0 && end <= csr.num_rows) << "Invalid end index: " << end;
  CHECK_GE(end, start);
482
  CSRMatrix ret;
483
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
484
    ret = impl::CSRSliceRows<XPU, IdType>(csr, start, end);
485
486
487
488
489
  });
  return ret;
}

CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
490
  CHECK_SAME_DTYPE(csr.indices, rows);
491
  CSRMatrix ret;
492
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRSliceRows", {
493
    ret = impl::CSRSliceRows<XPU, IdType>(csr, rows);
494
495
496
497
498
  });
  return ret;
}

CSRMatrix CSRSliceMatrix(CSRMatrix csr, NDArray rows, NDArray cols) {
499
500
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
501
  CHECK_SAME_CONTEXT(rows, cols);
502
  CSRMatrix ret;
503
  ATEN_CSR_SWITCH_CUDA_UVA(csr, rows, XPU, IdType, "CSRSliceMatrix", {
504
    ret = impl::CSRSliceMatrix<XPU, IdType>(csr, rows, cols);
505
506
507
508
  });
  return ret;
}

509
void CSRSort_(CSRMatrix* csr) {
510
511
512
  if (csr->sorted)
    return;
  ATEN_CSR_SWITCH_CUDA(*csr, XPU, IdType, "CSRSort_", {
513
    impl::CSRSort_<XPU, IdType>(csr);
Da Zheng's avatar
Da Zheng committed
514
515
516
  });
}

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
std::pair<CSRMatrix, NDArray> CSRSortByTag(
    const CSRMatrix &csr, IdArray tag, int64_t num_tags) {
  CHECK_EQ(csr.num_cols, tag->shape[0])
      << "The length of the tag array should be equal to the number of columns ";
  CHECK_SAME_CONTEXT(csr.indices, tag);
  CHECK_INT(tag, "tag");
  std::pair<CSRMatrix, NDArray> ret;
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRSortByTag", {
    ATEN_ID_TYPE_SWITCH(tag->dtype, TagType, {
      ret = impl::CSRSortByTag<XPU, IdType, TagType>(csr, tag, num_tags);
    });
  });
  return ret;
}

Da Zheng's avatar
Da Zheng committed
532
533
534
535
536
537
538
539
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  CSRMatrix ret;
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRReorder", {
    ret = impl::CSRReorder<XPU, IdType>(csr, new_row_ids, new_col_ids);
  });
  return ret;
}

540
541
CSRMatrix CSRRemove(CSRMatrix csr, IdArray entries) {
  CSRMatrix ret;
542
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRRemove", {
543
544
545
546
547
    ret = impl::CSRRemove<XPU, IdType>(csr, entries);
  });
  return ret;
}

548
549
550
COOMatrix CSRRowWiseSampling(
    CSRMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
  COOMatrix ret;
551
  if (IsNullArray(prob)) {
552
    ATEN_CSR_SWITCH_CUDA_UVA(mat, rows, XPU, IdType, "CSRRowWiseSampling", {
553
      ret = impl::CSRRowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
554
555
556
    });
  } else {
    ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseSampling", {
557
558
559
560
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::CSRRowWiseSampling<XPU, IdType, FloatType>(
            mat, rows, num_samples, prob, replace);
      });
561
562
    });
  }
563
564
565
  return ret;
}

566
567
COOMatrix CSRRowWisePerEtypeSampling(
    CSRMatrix mat, IdArray rows, IdArray etypes,
568
569
    const std::vector<int64_t>& num_samples, FloatArray prob, bool replace,
    bool etype_sorted) {
570
571
572
573
  COOMatrix ret;
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWisePerEtypeSampling", {
    if (IsNullArray(prob)) {
      ret = impl::CSRRowWisePerEtypeSamplingUniform<XPU, IdType>(
574
            mat, rows, etypes, num_samples, replace, etype_sorted);
575
576
577
    } else {
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::CSRRowWisePerEtypeSampling<XPU, IdType, FloatType>(
578
            mat, rows, etypes, num_samples, prob, replace, etype_sorted);
579
580
581
582
583
584
585
      });
    }
  });
  return ret;
}


586
COOMatrix CSRRowWiseTopk(
587
    CSRMatrix mat, IdArray rows, int64_t k, NDArray weight, bool ascending) {
588
  COOMatrix ret;
589
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseTopk", {
590
591
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::CSRRowWiseTopk<XPU, IdType, DType>(
592
593
594
595
596
597
          mat, rows, k, weight, ascending);
    });
  });
  return ret;
}

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
COOMatrix CSRRowWiseSamplingBiased(
    CSRMatrix mat,
    IdArray rows,
    int64_t num_samples,
    NDArray tag_offset,
    FloatArray bias,
    bool replace) {
  COOMatrix ret;
  ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseSamplingBiased", {
    ATEN_FLOAT_TYPE_SWITCH(bias->dtype, FloatType, "bias", {
        ret = impl::CSRRowWiseSamplingBiased<XPU, IdType, FloatType>(
          mat, rows, num_samples, tag_offset, bias, replace);
    });
  });
  return ret;
}

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
std::pair<IdArray, IdArray> CSRGlobalUniformNegativeSampling(
    const CSRMatrix& csr,
    int64_t num_samples,
    int num_trials,
    bool exclude_self_loops,
    bool replace,
    double redundancy) {
  CHECK_GT(num_samples, 0) << "Number of samples must be positive";
  CHECK_GT(num_trials, 0) << "Number of sampling trials must be positive";
  std::pair<IdArray, IdArray> result;
  ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGlobalUniformNegativeSampling", {
    result = impl::CSRGlobalUniformNegativeSampling<XPU, IdType>(
        csr, num_samples, num_trials, exclude_self_loops, replace, redundancy);
  });
  return result;
}

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

CSRMatrix UnionCsr(const std::vector<CSRMatrix>& csrs) {
  CSRMatrix ret;
  CHECK_GT(csrs.size(), 1) << "UnionCsr creates a union of multiple CSRMatrixes";
  // sanity check
  for (size_t i = 1; i < csrs.size(); ++i) {
    CHECK_EQ(csrs[0].num_rows, csrs[i].num_rows) <<
      "UnionCsr requires both CSRMatrix have same number of rows";
    CHECK_EQ(csrs[0].num_cols, csrs[i].num_cols) <<
      "UnionCsr requires both CSRMatrix have same number of cols";
    CHECK_SAME_CONTEXT(csrs[0].indptr, csrs[i].indptr);
    CHECK_SAME_DTYPE(csrs[0].indptr, csrs[i].indptr);
  }

  ATEN_CSR_SWITCH(csrs[0], XPU, IdType, "UnionCsr", {
    ret = impl::UnionCsr<XPU, IdType>(csrs);
  });
  return ret;
}


653
654
655
656
657
658
659
660
661
662
663
std::tuple<CSRMatrix, IdArray, IdArray>
CSRToSimple(const CSRMatrix& csr) {
  std::tuple<CSRMatrix, IdArray, IdArray> ret;

  CSRMatrix sorted_csr = (CSRIsSorted(csr)) ? csr : CSRSort(csr);
  ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRToSimple", {
    ret = impl::CSRToSimple<XPU, IdType>(sorted_csr);
  });
  return ret;
}

664
665
///////////////////////// COO routines //////////////////////////

666
667
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
  bool ret = false;
668
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
669
670
671
672
673
674
675
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
  NDArray ret;
676
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
677
678
679
680
681
    ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
  });
  return ret;
}

682
683
bool COOHasDuplicate(COOMatrix coo) {
  bool ret = false;
684
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOHasDuplicate", {
685
686
687
688
689
    ret = impl::COOHasDuplicate<XPU, IdType>(coo);
  });
  return ret;
}

690
691
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
  int64_t ret = 0;
692
  ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOGetRowNNZ", {
693
694
695
696
697
698
699
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

NDArray COOGetRowNNZ(COOMatrix coo, NDArray row) {
  NDArray ret;
700
  ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOGetRowNNZ", {
701
702
703
704
705
706
707
    ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
  });
  return ret;
}

std::pair<NDArray, NDArray> COOGetRowDataAndIndices(COOMatrix coo, int64_t row) {
  std::pair<NDArray, NDArray> ret;
708
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowDataAndIndices", {
709
    ret = impl::COOGetRowDataAndIndices<XPU, IdType>(coo, row);
710
711
712
713
714
715
716
  });
  return ret;
}

std::vector<NDArray> COOGetDataAndIndices(
    COOMatrix coo, NDArray rows, NDArray cols) {
  std::vector<NDArray> ret;
717
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetDataAndIndices", {
718
    ret = impl::COOGetDataAndIndices<XPU, IdType>(coo, rows, cols);
719
720
721
722
  });
  return ret;
}

723
724
725
726
727
728
729
730
NDArray COOGetData(COOMatrix coo, NDArray rows, NDArray cols) {
  NDArray ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetData", {
    ret = impl::COOGetData<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

731
COOMatrix COOTranspose(COOMatrix coo) {
732
  return COOMatrix(coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data);
733
734
}

735
736
CSRMatrix COOToCSR(COOMatrix coo) {
  CSRMatrix ret;
737
738
739
740
  ATEN_XPU_SWITCH_CUDA(coo.row->ctx.device_type, XPU, "COOToCSR", {
    ATEN_ID_TYPE_SWITCH(coo.row->dtype, IdType, {
      ret = impl::COOToCSR<XPU, IdType>(coo);
    });
741
742
743
744
  });
  return ret;
}

745
746
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
  COOMatrix ret;
747
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
748
    ret = impl::COOSliceRows<XPU, IdType>(coo, start, end);
749
750
751
752
753
754
  });
  return ret;
}

COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
  COOMatrix ret;
755
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
756
    ret = impl::COOSliceRows<XPU, IdType>(coo, rows);
757
758
759
760
761
762
  });
  return ret;
}

COOMatrix COOSliceMatrix(COOMatrix coo, NDArray rows, NDArray cols) {
  COOMatrix ret;
763
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceMatrix", {
764
765
766
767
768
    ret = impl::COOSliceMatrix<XPU, IdType>(coo, rows, cols);
  });
  return ret;
}

769
770
771
772
773
774
void COOSort_(COOMatrix* mat, bool sort_column) {
  if ((mat->row_sorted && !sort_column) || mat->col_sorted)
    return;
  ATEN_XPU_SWITCH_CUDA(mat->row->ctx.device_type, XPU, "COOSort_", {
    ATEN_ID_TYPE_SWITCH(mat->row->dtype, IdType, {
      impl::COOSort_<XPU, IdType>(mat, sort_column);
775
    });
776
  });
777
778
779
780
781
782
783
784
785
}

std::pair<bool, bool> COOIsSorted(COOMatrix coo) {
  if (coo.row->shape[0] <= 1)
    return {true, true};
  std::pair<bool, bool> ret;
  ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOIsSorted", {
    ret = impl::COOIsSorted<XPU, IdType>(coo);
  });
786
787
788
  return ret;
}

789
790
791
792
793
794
795
796
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOReorder", {
    ret = impl::COOReorder<XPU, IdType>(coo, new_row_ids, new_col_ids);
  });
  return ret;
}

797
798
COOMatrix COORemove(COOMatrix coo, IdArray entries) {
  COOMatrix ret;
799
  ATEN_COO_SWITCH(coo, XPU, IdType, "COORemove", {
800
801
802
803
804
    ret = impl::COORemove<XPU, IdType>(coo, entries);
  });
  return ret;
}

805
806
807
COOMatrix COORowWiseSampling(
    COOMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
  COOMatrix ret;
808
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseSampling", {
809
    if (IsNullArray(prob)) {
810
811
812
813
814
815
816
817
818
819
820
      ret = impl::COORowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
    } else {
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::COORowWiseSampling<XPU, IdType, FloatType>(
            mat, rows, num_samples, prob, replace);
      });
    }
  });
  return ret;
}

821
822
COOMatrix COORowWisePerEtypeSampling(
    COOMatrix mat, IdArray rows, IdArray etypes,
823
824
    const std::vector<int64_t>& num_samples, FloatArray prob, bool replace,
    bool etype_sorted) {
825
826
827
828
  COOMatrix ret;
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWisePerEtypeSampling", {
    if (IsNullArray(prob)) {
      ret = impl::COORowWisePerEtypeSamplingUniform<XPU, IdType>(
829
            mat, rows, etypes, num_samples, replace, etype_sorted);
830
831
832
    } else {
      ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
        ret = impl::COORowWisePerEtypeSampling<XPU, IdType, FloatType>(
833
            mat, rows, etypes, num_samples, prob, replace, etype_sorted);
834
835
836
837
838
839
      });
    }
  });
  return ret;
}

840
841
842
COOMatrix COORowWiseTopk(
    COOMatrix mat, IdArray rows, int64_t k, FloatArray weight, bool ascending) {
  COOMatrix ret;
843
  ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseTopk", {
844
845
    ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
      ret = impl::COORowWiseTopk<XPU, IdType, DType>(
846
847
          mat, rows, k, weight, ascending);
    });
848
849
850
851
  });
  return ret;
}

852
853
std::pair<COOMatrix, IdArray> COOCoalesce(COOMatrix coo) {
  std::pair<COOMatrix, IdArray> ret;
854
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOCoalesce", {
855
856
857
858
859
    ret = impl::COOCoalesce<XPU, IdType>(coo);
  });
  return ret;
}

860
861
862
863
864
865
866
COOMatrix COOLineGraph(const COOMatrix &coo, bool backtracking) {
  COOMatrix ret;
  ATEN_COO_SWITCH(coo, XPU, IdType, "COOLineGraph", {
    ret = impl::COOLineGraph<XPU, IdType>(coo, backtracking);
  });
  return ret;
}
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

COOMatrix UnionCoo(const std::vector<COOMatrix>& coos) {
  COOMatrix ret;
  CHECK_GT(coos.size(), 1) << "UnionCoo creates a union of multiple COOMatrixes";
  // sanity check
  for (size_t i = 1; i < coos.size(); ++i) {
    CHECK_EQ(coos[0].num_rows, coos[i].num_rows) <<
      "UnionCoo requires both COOMatrix have same number of rows";
    CHECK_EQ(coos[0].num_cols, coos[i].num_cols) <<
      "UnionCoo requires both COOMatrix have same number of cols";
    CHECK_SAME_CONTEXT(coos[0].row, coos[i].row);
    CHECK_SAME_DTYPE(coos[0].row, coos[i].row);
  }

  // we assume the number of coos is not large in common cases
  std::vector<IdArray> coo_row;
  std::vector<IdArray> coo_col;
  bool has_data = false;

  for (size_t i = 0; i < coos.size(); ++i) {
    coo_row.push_back(coos[i].row);
    coo_col.push_back(coos[i].col);
    has_data |= COOHasData(coos[i]);
  }

  IdArray row = Concat(coo_row);
  IdArray col = Concat(coo_col);
  IdArray data = NullArray();

  if (has_data) {
    std::vector<IdArray> eid_data;
    eid_data.push_back(COOHasData(coos[0]) ?
                       coos[0].data :
                       Range(0,
                             coos[0].row->shape[0],
                             coos[0].row->dtype.bits,
                             coos[0].row->ctx));
    int64_t num_edges = coos[0].row->shape[0];
    for (size_t i = 1; i < coos.size(); ++i) {
      eid_data.push_back(COOHasData(coos[i]) ?
                         coos[i].data + num_edges :
                         Range(num_edges,
                               num_edges + coos[i].row->shape[0],
                               coos[i].row->dtype.bits,
                               coos[i].row->ctx));
      num_edges += coos[i].row->shape[0];
    }

    data = Concat(eid_data);
  }

  return COOMatrix(
    coos[0].num_rows,
    coos[0].num_cols,
    row,
    col,
    data,
    false,
    false);
}


929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
std::tuple<COOMatrix, IdArray, IdArray>
COOToSimple(const COOMatrix& coo) {
  // coo column sorted
  const COOMatrix sorted_coo = COOSort(coo, true);
  const IdArray eids_shuffled = COOHasData(sorted_coo) ?
    sorted_coo.data :
    Range(0, sorted_coo.row->shape[0], sorted_coo.row->dtype.bits, sorted_coo.row->ctx);
  const auto &coalesced_result = COOCoalesce(sorted_coo);
  const COOMatrix &coalesced_adj = coalesced_result.first;
  const IdArray &count = coalesced_result.second;

  /*
   * eids_shuffled actually already contains the mapping from old edge space to the
   * new one:
   *
   * * eids_shuffled[0:count[0]] indicates the original edge IDs that coalesced into new
   *   edge #0.
   * * eids_shuffled[count[0]:count[0] + count[1]] indicates those that coalesced into
   *   new edge #1.
   * * eids_shuffled[count[0] + count[1]:count[0] + count[1] + count[2]] indicates those
   *   that coalesced into new edge #2.
   * * etc.
   *
   * Here, we need to translate eids_shuffled to an array "eids_remapped" such that
   * eids_remapped[i] indicates the new edge ID the old edge #i is mapped to.  The
   * translation can simply be achieved by (in numpy code):
   *
   *     new_eid_for_eids_shuffled = np.range(len(count)).repeat(count)
   *     eids_remapped = np.zeros_like(new_eid_for_eids_shuffled)
   *     eids_remapped[eids_shuffled] = new_eid_for_eids_shuffled
   */
  const IdArray new_eids = Range(
    0, coalesced_adj.row->shape[0], coalesced_adj.row->dtype.bits, coalesced_adj.row->ctx);
  const IdArray eids_remapped = Scatter(Repeat(new_eids, count), eids_shuffled);

  COOMatrix ret = COOMatrix(
    coalesced_adj.num_rows,
    coalesced_adj.num_cols,
    coalesced_adj.row,
    coalesced_adj.col,
    NullArray(),
    true,
    true);
  return std::make_tuple(ret, count, eids_remapped);
}

975
///////////////////////// Graph Traverse routines //////////////////////////
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
Frontiers BFSNodesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSNodesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers BFSEdgesFrontiers(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSEdgesFrontiers", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::BFSEdgesFrontiers<XPU, IdType>(csr, source);
    });
  });
  return ret;
}

Frontiers TopologicalNodesFrontiers(const CSRMatrix& csr) {
  Frontiers ret;
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(csr.indptr->ctx.device_type, XPU, "TopologicalNodesFrontiers", {
    ATEN_ID_TYPE_SWITCH(csr.indices->dtype, IdType, {
      ret = impl::TopologicalNodesFrontiers<XPU, IdType>(csr);
    });
  });
  return ret;
}

Frontiers DGLDFSEdges(const CSRMatrix& csr, IdArray source) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSEdges<XPU, IdType>(csr, source);
    });
  });
  return ret;
}
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
Frontiers DGLDFSLabeledEdges(const CSRMatrix& csr,
                             IdArray source,
                             const bool has_reverse_edge,
                             const bool has_nontree_edge,
                             const bool return_labels) {
  Frontiers ret;
  CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
    "Graph and source should in the same device context";
  CHECK_EQ(csr.indices->dtype, source->dtype) <<
    "Graph and source should in the same dtype";
  CHECK_EQ(csr.num_rows, csr.num_cols) <<
    "Graph traversal can only work on square-shaped CSR.";
  ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSLabeledEdges", {
    ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
      ret = impl::DGLDFSLabeledEdges<XPU, IdType>(csr,
                                                  source,
                                                  has_reverse_edge,
                                                  has_nontree_edge,
                                                  return_labels);
    });
  });
  return ret;
}

1060

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
///////////////////////// C APIs /////////////////////////
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFormat")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->format;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumRows")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_rows;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumCols")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    *rv = spmat->num_cols;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetIndices")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    const int64_t i = args[1];
    *rv = spmat->indices[i];
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFlags")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    SparseMatrixRef spmat = args[0];
    List<Value> flags;
    for (bool flg : spmat->flags) {
      flags.push_back(Value(MakeValue(flg)));
    }
    *rv = flags;
  });

DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLCreateSparseMatrix")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const int32_t format = args[0];
    const int64_t nrows = args[1];
    const int64_t ncols = args[2];
    const List<Value> indices = args[3];
    const List<Value> flags = args[4];
    std::shared_ptr<SparseMatrix> spmat(new SparseMatrix(
          format, nrows, ncols,
          ListValueToVector<IdArray>(indices),
          ListValueToVector<bool>(flags)));
    *rv = SparseMatrixRef(spmat);
  });

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLExistSharedMemArray")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string name = args[0];
#ifndef _WIN32
    *rv = SharedMemory::Exist(name);
#else
    *rv = false;
#endif  // _WIN32
  });

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLArrayCastToSigned")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray array = args[0];
    CHECK_EQ(array->dtype.code, kDLUInt);
    std::vector<int64_t> shape(array->shape, array->shape + array->ndim);
    DLDataType dtype = array->dtype;
    dtype.code = kDLInt;
    *rv = array.CreateView(shape, dtype, 0);
  });

1131
1132
}  // namespace aten
}  // namespace dgl
1133
1134
1135
1136

std::ostream& operator << (std::ostream& os, dgl::runtime::NDArray array) {
  return os << dgl::aten::ToDebugString(array);
}