spmm.h 22.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cpu/spmm.h
 * \brief SPMM CPU kernel function header.
 */
#ifndef DGL_ARRAY_CPU_SPMM_H_
#define DGL_ARRAY_CPU_SPMM_H_

#include <dgl/array.h>
#include <dgl/bcast.h>
11
#include <dgl/runtime/parallel_for.h>
12
#include <math.h>
13
#include <algorithm>
14
15
#include <limits>
#include <memory>
16
17
#include <algorithm>
#include <vector>
18
19
#include "spmm_binary_ops.h"
#if !defined(_WIN32)
20
#ifdef USE_AVX
21
#include "intel/cpu_support.h"
22
23
24
#ifdef USE_LIBXSMM
#include "spmm_blocking_libxsmm.h"
#endif  // USE_LIBXSMM
25
26
#endif  // USE_AVX
#endif  // _WIN32
27
28
29
30
namespace dgl {
namespace aten {
namespace cpu {

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#if !defined(_WIN32)
#ifdef USE_AVX
/*!
 * \brief CPU kernel of SpMM on Csr format using Xbyak.
 * \param cpu_spec JIT'ed kernel
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param X The feature on source nodes.
 * \param W The feature on edges.
 * \param O The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes. For each edge, it uses the
 *       JIT'ed kernel.
 */
template <typename IdType, typename DType, typename Op>
void SpMMSumCsrXbyak(dgl::ElemWiseAddUpdate<Op>* cpu_spec, const BcastOff& bcast,
                     const CSRMatrix& csr, const DType* X, const DType* W, DType* O) {
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  const IdType* indices = csr.indices.Ptr<IdType>();
  const IdType* edges = csr.data.Ptr<IdType>();
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
53
54
55
56
57
58
59
60
61
62

  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      DType* out_off = O + rid * dim;
      for (IdType j = row_start; j < row_end; ++j) {
        const IdType cid = indices[j];
        const IdType eid = has_idx ? edges[j] : j;
        cpu_spec->run(out_off, X + cid * lhs_dim, W + eid * rhs_dim, dim);
      }
63
    }
64
  });
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
}
#endif  // USE_AVX
#endif  // _WIN32

/*!
 * \brief Naive CPU kernel of SpMM on Csr format.
 * \param cpu_spec JIT'ed kernel
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param X The feature on source nodes.
 * \param W The feature on edges.
 * \param O The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes.
 */
template <typename IdType, typename DType, typename Op>
void SpMMSumCsrNaive(const BcastOff& bcast, const CSRMatrix& csr, const DType* X,
                     const DType* W, DType* O) {
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  const IdType* indices = csr.indices.Ptr<IdType>();
  const IdType* edges = csr.data.Ptr<IdType>();
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      DType* out_off = O + rid * dim;
      for (IdType j = row_start; j < row_end; ++j) {
        const IdType cid = indices[j];
        const IdType eid = has_idx ? edges[j] : j;
        for (int64_t k = 0; k < dim; ++k) {
          const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* lhs_off =
            Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr;
          const DType* rhs_off =
            Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
          out_off[k] += Op::Call(lhs_off, rhs_off);
        }
104
105
      }
    }
106
  });
107
108
}

109
110
111
112
113
114
115
116
117
118
119
/*!
 * \brief CPU kernel of SpMM on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes.
 */
template <typename IdType, typename DType, typename Op>
120
121
void SpMMSumCsr(const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat,
                NDArray efeat, NDArray out) {
122
123
124
125
126
127
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  const IdType* indices = csr.indices.Ptr<IdType>();
  const IdType* edges = csr.data.Ptr<IdType>();
  const DType* X = ufeat.Ptr<DType>();
  const DType* W = efeat.Ptr<DType>();
128
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
129
  DType* O = out.Ptr<DType>();
130
131
132
133
134
135
136
137
138
139
140
  CHECK_NOTNULL(indptr);
  CHECK_NOTNULL(O);
  if (Op::use_lhs) {
    CHECK_NOTNULL(indices);
    CHECK_NOTNULL(X);
  }
  if (Op::use_rhs) {
    if (has_idx)
      CHECK_NOTNULL(edges);
    CHECK_NOTNULL(W);
  }
141
#if !defined(_WIN32)
142
#ifdef USE_AVX
143
144
145
146
147
#ifdef USE_LIBXSMM
  const bool no_libxsmm =
       bcast.use_bcast || std::is_same<DType, double>::value;
  if (!no_libxsmm) {
    SpMMSumCsrLibxsmm<IdType, DType, Op>(bcast, csr, ufeat, efeat, out);
148
  } else {
149
150
151
152
153
154
155
156
157
158
159
160
#endif  // USE_LIBXSMM
    typedef dgl::ElemWiseAddUpdate<Op> ElemWiseUpd;
    /* Prepare an assembler kernel */
    static std::unique_ptr<ElemWiseUpd> asm_kernel_ptr(
        (dgl::IntelKernel<>::IsEnabled()) ? new ElemWiseUpd() : nullptr);
    /* Distribute the kernel among OMP threads */
    ElemWiseUpd* cpu_spec = (asm_kernel_ptr && asm_kernel_ptr->applicable())
      ? asm_kernel_ptr.get()
      : nullptr;
    if (cpu_spec && dim > 16 && !bcast.use_bcast) {
      SpMMSumCsrXbyak<IdType, DType, Op>(cpu_spec, bcast, csr, X, W, O);
    } else {
161
162
#endif  // USE_AVX
#endif  // _WIN32
163
    SpMMSumCsrNaive<IdType, DType, Op>(bcast, csr, X, W, O);
164
#if !defined(_WIN32)
165
#ifdef USE_AVX
166
167
    }
#ifdef USE_LIBXSMM
168
  }
169
#endif  // USE_LIBXSMM
170
171
#endif  // USE_AVX
#endif  // _WIN32
172
173
174
175
176
177
178
179
180
181
182
183
184
185
}

/*!
 * \brief CPU kernel of SpMM on Coo format.
 * \param bcast Broadcast information.
 * \param coo The Coo matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes. To avoid possible data hazard,
 *       we use atomic operators in the reduction phase.
 */
template <typename IdType, typename DType, typename Op>
186
187
void SpMMSumCoo(const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat,
                NDArray efeat, NDArray out) {
188
189
190
191
192
193
  const bool has_idx = !IsNullArray(coo.data);
  const IdType* row = coo.row.Ptr<IdType>();
  const IdType* col = coo.col.Ptr<IdType>();
  const IdType* edges = coo.data.Ptr<IdType>();
  const DType* X = ufeat.Ptr<DType>();
  const DType* W = efeat.Ptr<DType>();
194
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
195
196
197
198
199
200
201
202
203
  DType* O = out.Ptr<DType>();
  const int64_t nnz = coo.row->shape[0];
  // fill zero elements
  memset(O, 0, out.GetSize());
  // spmm
#pragma omp parallel for
  for (IdType i = 0; i < nnz; ++i) {
    const IdType rid = row[i];
    const IdType cid = col[i];
204
    const IdType eid = has_idx ? edges[i] : i;
205
206
207
208
    DType* out_off = O + cid * dim;
    for (int64_t k = 0; k < dim; ++k) {
      const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
      const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
209
210
211
212
      const DType* lhs_off =
        Op::use_lhs ? X + rid * lhs_dim + lhs_add : nullptr;
      const DType* rhs_off =
        Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
213
      const DType val = Op::Call(lhs_off, rhs_off);
214
      if (val != 0) {
215
#pragma omp atomic
216
217
        out_off[k] += val;
      }
218
219
220
221
222
223
224
225
226
227
228
    }
  }
}

/*!
 * \brief CPU kernel of SpMM-Min/Max on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
229
 * \param argu Arg-Min/Max on source nodes, which refers the source node indices
230
 *        correspond to the minimum/maximum values of reduction result on
231
232
233
234
235
236
237
 *        destination nodes. It's useful in computing gradients of Min/Max
 * reducer. \param arge Arg-Min/Max on edges. which refers the source node
 * indices correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max
 * reducer. \note It uses node parallel strategy, different threads are
 * responsible for the computation of different nodes. \note The result will
 * contain infinity for zero-degree nodes.
238
239
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
240
241
void SpMMCmpCsr(const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat,
                NDArray efeat, NDArray out, NDArray argu, NDArray arge) {
242
243
244
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices = static_cast<IdType*>(csr.indices->data);
245
246
247
248
249
  const IdType* edges =
    has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
  const DType* X = Op::use_lhs ? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len,
250
251
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
252
253
  IdType* argX = Op::use_lhs ? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs ? static_cast<IdType*>(arge->data) : nullptr;
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
  CHECK_NOTNULL(indptr);
  CHECK_NOTNULL(O);
  if (Op::use_lhs) {
    CHECK_NOTNULL(indices);
    CHECK_NOTNULL(X);
    CHECK_NOTNULL(argX);
  }
  if (Op::use_rhs) {
    if (has_idx)
      CHECK_NOTNULL(edges);
    CHECK_NOTNULL(W);
    CHECK_NOTNULL(argW);
  }
#if !defined(_WIN32)
#ifdef USE_AVX
#ifdef USE_LIBXSMM

  const bool no_libxsmm =
       bcast.use_bcast || std::is_same<DType, double>::value;
  if (!no_libxsmm) {
    SpMMCmpCsrLibxsmm<IdType, DType, Op, Cmp>(bcast, csr, ufeat, efeat, out, argu, arge);
  } else {
#endif  // USE_LIBXSMM
#endif  // USE_AVX
#endif  // _WIN32

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
      for (auto rid = b; rid < e; ++rid) {
        const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
        DType* out_off = O + rid * dim;
        IdType* argx_off = argX + rid * dim;
        IdType* argw_off = argW + rid * dim;
        for (IdType j = row_start; j < row_end; ++j) {
          const IdType cid = indices[j];
          const IdType eid = has_idx ? edges[j] : j;
          for (int64_t k = 0; k < dim; ++k) {
            const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
            const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
            const DType* lhs_off =
              Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr;
            const DType* rhs_off =
              Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
            const DType val = Op::Call(lhs_off, rhs_off);
            if (Cmp::Call(out_off[k], val)) {
              out_off[k] = val;
              if (Op::use_lhs) argx_off[k] = cid;
              if (Op::use_rhs) argw_off[k] = eid;
            }
          }
303
304
        }
      }
305
    });
306
307
308
309
310
311
312
#if !defined(_WIN32)
#ifdef USE_AVX
#ifdef USE_LIBXSMM
  }
#endif  // USE_LIBXSMM
#endif  // USE_AVX
#endif  // _WIN32
313
314
}

315
316
317
318
319
320
321
322
323
324
/*!
 * \brief CPU kernel of SpMM-Min/Max on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \param argu Arg-Min/Max on source nodes, which refers the source node indices
 *        correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max
325
326
327
 *        reducer.
 * \param arge Arg-Min/Max on edges. which refers the source node
 *        indices correspond to the minimum/maximum values of reduction result on
328
 *        destination nodes. It's useful in computing gradients of Min/Max
329
330
331
332
333
334
335
336
337
 *        reducer.
 * \param argu_ntype Node type of the arg-Min/Max on source nodes, which refers the
 *        source node types correspond to the minimum/maximum values of reduction result
 *        on destination nodes. It's useful in computing gradients of Min/Max reducer.
 * \param arge_etype Edge-type of the arg-Min/Max on edges. which refers the source
 *        node indices correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max reducer.
 * \param src_type Node type of the source nodes of an etype
 * \param etype Edge type
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
void SpMMCmpCsrHetero(const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat,
                NDArray efeat, NDArray out, NDArray argu, NDArray arge,
                NDArray argu_ntype, NDArray arge_etype,
                const int ntype, const int etype) {
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices = static_cast<IdType*>(csr.indices->data);
  const IdType* edges =
    has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
  const DType* X = Op::use_lhs ? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len,
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
  IdType* argX = Op::use_lhs ? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs ? static_cast<IdType*>(arge->data) : nullptr;
  IdType* argX_ntype = Op::use_lhs ? static_cast<IdType*>(argu_ntype->data) : nullptr;
  IdType* argW_etype = Op::use_rhs ? static_cast<IdType*>(arge_etype->data) : nullptr;
  CHECK_NOTNULL(indptr);
  CHECK_NOTNULL(O);
  if (Op::use_lhs) {
    CHECK_NOTNULL(indices);
    CHECK_NOTNULL(X);
    CHECK_NOTNULL(argX);
  }
  if (Op::use_rhs) {
    if (has_idx)
      CHECK_NOTNULL(edges);
    CHECK_NOTNULL(W);
    CHECK_NOTNULL(argW);
  }
  // TODO(Israt): Use LIBXSMM. Homogeneous graph uses LIBXMM when enabled.
  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      DType* out_off = O + rid * dim;
      IdType* argx_off = argX + rid * dim;
      IdType* argw_off = argW + rid * dim;
      IdType* argx_ntype = argX_ntype + rid * dim;
      IdType* argw_etype = argW_etype + rid * dim;
      for (IdType j = row_start; j < row_end; ++j) {
        const IdType cid = indices[j];
        const IdType eid = has_idx ? edges[j] : j;
        for (int64_t k = 0; k < dim; ++k) {
          const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* lhs_off =
            Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr;
          const DType* rhs_off =
            Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
          const DType val = Op::Call(lhs_off, rhs_off);
          if (Cmp::Call(out_off[k], val)) {
            out_off[k] = val;
            if (Op::use_lhs) {
              argx_off[k] = cid;
              argx_ntype[k] = ntype;
            }
            if (Op::use_rhs) {
              argw_off[k] = eid;
              argw_etype[k] = etype;
            }
          }
        }
      }
    }
  });
}


409
410
411
412
413
414
415
/*!
 * \brief CPU kernel of SpMM-Min/Max on Coo format.
 * \param bcast Broadcast information.
 * \param coo The Coo matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
416
 * \param argu Arg-Min/Max on source nodes, which refers the source node indices
417
 *        correspond to the minimum/maximum values of reduction result on
418
419
420
421
422
423
424
425
 *        destination nodes. It's useful in computing gradients of Min/Max
 * reducer. \param arge Arg-Min/Max on edges. which refers the source node
 * indices correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max
 * reducer. \note it uses node parallel strategy, different threads are
 * responsible for the computation of different nodes. To avoid possible data
 * hazard, we use atomic operators in the reduction phase. \note The result will
 * contain infinity for zero-degree nodes.
426
427
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
428
429
void SpMMCmpCoo(const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat,
                NDArray efeat, NDArray out, NDArray argu, NDArray arge) {
430
431
432
  const bool has_idx = !IsNullArray(coo.data);
  const IdType* row = static_cast<IdType*>(coo.row->data);
  const IdType* col = static_cast<IdType*>(coo.col->data);
433
434
435
436
437
  const IdType* edges =
    has_idx ? static_cast<IdType*>(coo.data->data) : nullptr;
  const DType* X = Op::use_lhs ? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len,
438
439
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
440
441
  IdType* argX = Op::use_lhs ? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs ? static_cast<IdType*>(arge->data) : nullptr;
442
443
444
445
446
447
448
449
  const int64_t nnz = coo.row->shape[0];
  // fill zero elements
  std::fill(O, O + out.NumElements(), Cmp::zero);
  // spmm
#pragma omp parallel for
  for (IdType i = 0; i < nnz; ++i) {
    const IdType rid = row[i];
    const IdType cid = col[i];
450
    const IdType eid = has_idx ? edges[i] : i;
451
    DType* out_off = O + cid * dim;
452
453
    IdType* argx_off = Op::use_lhs ? argX + cid * dim : nullptr;
    IdType* argw_off = Op::use_rhs ? argW + cid * dim : nullptr;
454
455
456
    for (int64_t k = 0; k < dim; ++k) {
      const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
      const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
457
458
459
460
      const DType* lhs_off =
        Op::use_lhs ? X + rid * lhs_dim + lhs_add : nullptr;
      const DType* rhs_off =
        Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
461
462
463
464
      const DType val = Op::Call(lhs_off, rhs_off);
#pragma omp critical
      if (Cmp::Call(out_off[k], val)) {
        out_off[k] = val;
465
466
        if (Op::use_lhs) argx_off[k] = rid;
        if (Op::use_rhs) argw_off[k] = eid;
467
468
469
470
471
      }
    }
  }
}

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

/*!
 * \brief CPU kernel of Edge_softmax_csr_forward on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result of edge_softmax_forward.
 */
template <typename IdType, typename DType, typename Op>
void Edge_softmax_csr_forward(const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat,
                NDArray efeat, NDArray out) {
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* edges =
    has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, rhs_dim = bcast.rhs_len;
  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      std::vector<DType> data_e(row_end-row_start, 0);
      std::vector<IdType> num(row_end-row_start, 0);
      for (int64_t k = 0; k < dim; ++k) {
        DType max_v = -std::numeric_limits<DType>::infinity();
        for (IdType j = row_start; j < row_end; ++j) {
          const IdType eid = has_idx ? edges[j] : j;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* rhs_off =
            Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
          data_e[j-row_start] = *rhs_off;
          num[j-row_start] = eid*rhs_dim+rhs_add;
          max_v = std::max<DType>(max_v, (*rhs_off));
        }
        DType exp_sum = 0;
        for (auto& element : data_e) {
          element -= max_v;
          element = std::exp(element);
          exp_sum += element;
        }
        for (int i=0; i < row_end-row_start; i++) {
          out.Ptr<DType>()[num[i]] = data_e[i]/exp_sum;
        }
      }
    }
  });
}


/*!
 * \brief CPU kernel of Edge_softmax_csr_backward on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param out The result of forward.
 * \param sds The result of gradiet * out.
 * \param back_out The result of edge_softmax_backward.
 */
template <typename IdType, typename DType, typename Op>
void Edge_softmax_csr_backward(const BcastOff& bcast, const CSRMatrix& csr, NDArray out,
                NDArray sds, NDArray back_out) {
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* edges =
    has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
  const DType* W_out = Op::use_rhs ? static_cast<DType*>(out->data) : nullptr;
  const DType* W_sds = Op::use_rhs ? static_cast<DType*>(sds->data) : nullptr;
  const int64_t dim = bcast.out_len, rhs_dim = bcast.rhs_len;
  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      for (int64_t k = 0; k < dim; ++k) {
        DType sum_sds = 0;
        for (IdType j = row_start; j < row_end; ++j) {
          const IdType eid = has_idx ? edges[j] : j;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* rhs_off_sds =
            Op::use_rhs ? W_sds + eid * rhs_dim + rhs_add : nullptr;
          sum_sds += (*rhs_off_sds);
        }
        for (IdType j = row_start; j< row_end; ++j) {
          const IdType eid = has_idx ? edges[j] : j;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* rhs_off_out =
            Op::use_rhs ? W_out + eid * rhs_dim + rhs_add : nullptr;
          const DType* rhs_off_sds =
            Op::use_rhs ? W_sds + eid * rhs_dim + rhs_add : nullptr;
          back_out.Ptr<DType>()[eid*rhs_dim+rhs_add] =  (*rhs_off_sds) - sum_sds*(*rhs_off_out);
        }
      }
    }
  });
}

565
566
567
568
569
}  // namespace cpu
}  // namespace aten
}  // namespace dgl

#endif  // DGL_ARRAY_CPU_SPMM_H_