spmm.h 14.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/cpu/spmm.h
 * \brief SPMM CPU kernel function header.
 */
#ifndef DGL_ARRAY_CPU_SPMM_H_
#define DGL_ARRAY_CPU_SPMM_H_

#include <dgl/array.h>
#include <dgl/bcast.h>
11
#include <dgl/runtime/parallel_for.h>
12
#include <algorithm>
13
14
15
16
#include <limits>
#include <memory>
#include "spmm_binary_ops.h"
#if !defined(_WIN32)
17
#ifdef USE_AVX
18
#include "intel/cpu_support.h"
19
20
21
#ifdef USE_LIBXSMM
#include "spmm_blocking_libxsmm.h"
#endif  // USE_LIBXSMM
22
23
#endif  // USE_AVX
#endif  // _WIN32
24
25
26
27
namespace dgl {
namespace aten {
namespace cpu {

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#if !defined(_WIN32)
#ifdef USE_AVX
/*!
 * \brief CPU kernel of SpMM on Csr format using Xbyak.
 * \param cpu_spec JIT'ed kernel
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param X The feature on source nodes.
 * \param W The feature on edges.
 * \param O The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes. For each edge, it uses the
 *       JIT'ed kernel.
 */
template <typename IdType, typename DType, typename Op>
void SpMMSumCsrXbyak(dgl::ElemWiseAddUpdate<Op>* cpu_spec, const BcastOff& bcast,
                     const CSRMatrix& csr, const DType* X, const DType* W, DType* O) {
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  const IdType* indices = csr.indices.Ptr<IdType>();
  const IdType* edges = csr.data.Ptr<IdType>();
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
50
51
52
53
54
55
56
57
58
59

  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      DType* out_off = O + rid * dim;
      for (IdType j = row_start; j < row_end; ++j) {
        const IdType cid = indices[j];
        const IdType eid = has_idx ? edges[j] : j;
        cpu_spec->run(out_off, X + cid * lhs_dim, W + eid * rhs_dim, dim);
      }
60
    }
61
  });
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
}
#endif  // USE_AVX
#endif  // _WIN32

/*!
 * \brief Naive CPU kernel of SpMM on Csr format.
 * \param cpu_spec JIT'ed kernel
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param X The feature on source nodes.
 * \param W The feature on edges.
 * \param O The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes.
 */
template <typename IdType, typename DType, typename Op>
void SpMMSumCsrNaive(const BcastOff& bcast, const CSRMatrix& csr, const DType* X,
                     const DType* W, DType* O) {
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  const IdType* indices = csr.indices.Ptr<IdType>();
  const IdType* edges = csr.data.Ptr<IdType>();
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      DType* out_off = O + rid * dim;
      for (IdType j = row_start; j < row_end; ++j) {
        const IdType cid = indices[j];
        const IdType eid = has_idx ? edges[j] : j;
        for (int64_t k = 0; k < dim; ++k) {
          const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* lhs_off =
            Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr;
          const DType* rhs_off =
            Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
          out_off[k] += Op::Call(lhs_off, rhs_off);
        }
101
102
      }
    }
103
  });
104
105
}

106
107
108
109
110
111
112
113
114
115
116
/*!
 * \brief CPU kernel of SpMM on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes.
 */
template <typename IdType, typename DType, typename Op>
117
118
void SpMMSumCsr(const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat,
                NDArray efeat, NDArray out) {
119
120
121
122
123
124
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  const IdType* indices = csr.indices.Ptr<IdType>();
  const IdType* edges = csr.data.Ptr<IdType>();
  const DType* X = ufeat.Ptr<DType>();
  const DType* W = efeat.Ptr<DType>();
125
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
126
  DType* O = out.Ptr<DType>();
127
128
129
130
131
132
133
134
135
136
137
  CHECK_NOTNULL(indptr);
  CHECK_NOTNULL(O);
  if (Op::use_lhs) {
    CHECK_NOTNULL(indices);
    CHECK_NOTNULL(X);
  }
  if (Op::use_rhs) {
    if (has_idx)
      CHECK_NOTNULL(edges);
    CHECK_NOTNULL(W);
  }
138
#if !defined(_WIN32)
139
#ifdef USE_AVX
140
141
142
143
144
#ifdef USE_LIBXSMM
  const bool no_libxsmm =
       bcast.use_bcast || std::is_same<DType, double>::value;
  if (!no_libxsmm) {
    SpMMSumCsrLibxsmm<IdType, DType, Op>(bcast, csr, ufeat, efeat, out);
145
  } else {
146
147
148
149
150
151
152
153
154
155
156
157
#endif  // USE_LIBXSMM
    typedef dgl::ElemWiseAddUpdate<Op> ElemWiseUpd;
    /* Prepare an assembler kernel */
    static std::unique_ptr<ElemWiseUpd> asm_kernel_ptr(
        (dgl::IntelKernel<>::IsEnabled()) ? new ElemWiseUpd() : nullptr);
    /* Distribute the kernel among OMP threads */
    ElemWiseUpd* cpu_spec = (asm_kernel_ptr && asm_kernel_ptr->applicable())
      ? asm_kernel_ptr.get()
      : nullptr;
    if (cpu_spec && dim > 16 && !bcast.use_bcast) {
      SpMMSumCsrXbyak<IdType, DType, Op>(cpu_spec, bcast, csr, X, W, O);
    } else {
158
159
#endif  // USE_AVX
#endif  // _WIN32
160
    SpMMSumCsrNaive<IdType, DType, Op>(bcast, csr, X, W, O);
161
#if !defined(_WIN32)
162
#ifdef USE_AVX
163
164
    }
#ifdef USE_LIBXSMM
165
  }
166
#endif  // USE_LIBXSMM
167
168
#endif  // USE_AVX
#endif  // _WIN32
169
170
171
172
173
174
175
176
177
178
179
180
181
182
}

/*!
 * \brief CPU kernel of SpMM on Coo format.
 * \param bcast Broadcast information.
 * \param coo The Coo matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
 * \note it uses node parallel strategy, different threads are responsible
 *       for the computation of different nodes. To avoid possible data hazard,
 *       we use atomic operators in the reduction phase.
 */
template <typename IdType, typename DType, typename Op>
183
184
void SpMMSumCoo(const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat,
                NDArray efeat, NDArray out) {
185
186
187
188
189
190
  const bool has_idx = !IsNullArray(coo.data);
  const IdType* row = coo.row.Ptr<IdType>();
  const IdType* col = coo.col.Ptr<IdType>();
  const IdType* edges = coo.data.Ptr<IdType>();
  const DType* X = ufeat.Ptr<DType>();
  const DType* W = efeat.Ptr<DType>();
191
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
192
193
194
195
196
197
198
199
200
  DType* O = out.Ptr<DType>();
  const int64_t nnz = coo.row->shape[0];
  // fill zero elements
  memset(O, 0, out.GetSize());
  // spmm
#pragma omp parallel for
  for (IdType i = 0; i < nnz; ++i) {
    const IdType rid = row[i];
    const IdType cid = col[i];
201
    const IdType eid = has_idx ? edges[i] : i;
202
203
204
205
    DType* out_off = O + cid * dim;
    for (int64_t k = 0; k < dim; ++k) {
      const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
      const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
206
207
208
209
      const DType* lhs_off =
        Op::use_lhs ? X + rid * lhs_dim + lhs_add : nullptr;
      const DType* rhs_off =
        Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
210
      const DType val = Op::Call(lhs_off, rhs_off);
211
      if (val != 0) {
212
#pragma omp atomic
213
214
        out_off[k] += val;
      }
215
216
217
218
219
220
221
222
223
224
225
    }
  }
}

/*!
 * \brief CPU kernel of SpMM-Min/Max on Csr format.
 * \param bcast Broadcast information.
 * \param csr The Csr matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
226
 * \param argu Arg-Min/Max on source nodes, which refers the source node indices
227
 *        correspond to the minimum/maximum values of reduction result on
228
229
230
231
232
233
234
 *        destination nodes. It's useful in computing gradients of Min/Max
 * reducer. \param arge Arg-Min/Max on edges. which refers the source node
 * indices correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max
 * reducer. \note It uses node parallel strategy, different threads are
 * responsible for the computation of different nodes. \note The result will
 * contain infinity for zero-degree nodes.
235
236
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
237
238
void SpMMCmpCsr(const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat,
                NDArray efeat, NDArray out, NDArray argu, NDArray arge) {
239
240
241
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices = static_cast<IdType*>(csr.indices->data);
242
243
244
245
246
  const IdType* edges =
    has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
  const DType* X = Op::use_lhs ? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len,
247
248
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
249
250
  IdType* argX = Op::use_lhs ? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs ? static_cast<IdType*>(arge->data) : nullptr;
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
  CHECK_NOTNULL(indptr);
  CHECK_NOTNULL(O);
  if (Op::use_lhs) {
    CHECK_NOTNULL(indices);
    CHECK_NOTNULL(X);
    CHECK_NOTNULL(argX);
  }
  if (Op::use_rhs) {
    if (has_idx)
      CHECK_NOTNULL(edges);
    CHECK_NOTNULL(W);
    CHECK_NOTNULL(argW);
  }
#if !defined(_WIN32)
#ifdef USE_AVX
#ifdef USE_LIBXSMM

  const bool no_libxsmm =
       bcast.use_bcast || std::is_same<DType, double>::value;
  if (!no_libxsmm) {
    SpMMCmpCsrLibxsmm<IdType, DType, Op, Cmp>(bcast, csr, ufeat, efeat, out, argu, arge);
  } else {
#endif  // USE_LIBXSMM
#endif  // USE_AVX
#endif  // _WIN32

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
      for (auto rid = b; rid < e; ++rid) {
        const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
        DType* out_off = O + rid * dim;
        IdType* argx_off = argX + rid * dim;
        IdType* argw_off = argW + rid * dim;
        for (IdType j = row_start; j < row_end; ++j) {
          const IdType cid = indices[j];
          const IdType eid = has_idx ? edges[j] : j;
          for (int64_t k = 0; k < dim; ++k) {
            const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
            const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
            const DType* lhs_off =
              Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr;
            const DType* rhs_off =
              Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
            const DType val = Op::Call(lhs_off, rhs_off);
            if (Cmp::Call(out_off[k], val)) {
              out_off[k] = val;
              if (Op::use_lhs) argx_off[k] = cid;
              if (Op::use_rhs) argw_off[k] = eid;
            }
          }
300
301
        }
      }
302
    });
303
304
305
306
307
308
309
#if !defined(_WIN32)
#ifdef USE_AVX
#ifdef USE_LIBXSMM
  }
#endif  // USE_LIBXSMM
#endif  // USE_AVX
#endif  // _WIN32
310
311
312
313
314
315
316
317
318
}

/*!
 * \brief CPU kernel of SpMM-Min/Max on Coo format.
 * \param bcast Broadcast information.
 * \param coo The Coo matrix.
 * \param ufeat The feature on source nodes.
 * \param efeat The feature on edges.
 * \param out The result feature on destination nodes.
319
 * \param argu Arg-Min/Max on source nodes, which refers the source node indices
320
 *        correspond to the minimum/maximum values of reduction result on
321
322
323
324
325
326
327
328
 *        destination nodes. It's useful in computing gradients of Min/Max
 * reducer. \param arge Arg-Min/Max on edges. which refers the source node
 * indices correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max
 * reducer. \note it uses node parallel strategy, different threads are
 * responsible for the computation of different nodes. To avoid possible data
 * hazard, we use atomic operators in the reduction phase. \note The result will
 * contain infinity for zero-degree nodes.
329
330
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
331
332
void SpMMCmpCoo(const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat,
                NDArray efeat, NDArray out, NDArray argu, NDArray arge) {
333
334
335
  const bool has_idx = !IsNullArray(coo.data);
  const IdType* row = static_cast<IdType*>(coo.row->data);
  const IdType* col = static_cast<IdType*>(coo.col->data);
336
337
338
339
340
  const IdType* edges =
    has_idx ? static_cast<IdType*>(coo.data->data) : nullptr;
  const DType* X = Op::use_lhs ? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len,
341
342
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
343
344
  IdType* argX = Op::use_lhs ? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs ? static_cast<IdType*>(arge->data) : nullptr;
345
346
347
348
349
350
351
352
  const int64_t nnz = coo.row->shape[0];
  // fill zero elements
  std::fill(O, O + out.NumElements(), Cmp::zero);
  // spmm
#pragma omp parallel for
  for (IdType i = 0; i < nnz; ++i) {
    const IdType rid = row[i];
    const IdType cid = col[i];
353
    const IdType eid = has_idx ? edges[i] : i;
354
    DType* out_off = O + cid * dim;
355
356
    IdType* argx_off = Op::use_lhs ? argX + cid * dim : nullptr;
    IdType* argw_off = Op::use_rhs ? argW + cid * dim : nullptr;
357
358
359
    for (int64_t k = 0; k < dim; ++k) {
      const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
      const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
360
361
362
363
      const DType* lhs_off =
        Op::use_lhs ? X + rid * lhs_dim + lhs_add : nullptr;
      const DType* rhs_off =
        Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
364
365
366
367
      const DType val = Op::Call(lhs_off, rhs_off);
#pragma omp critical
      if (Cmp::Call(out_off[k], val)) {
        out_off[k] = val;
368
369
        if (Op::use_lhs) argx_off[k] = rid;
        if (Op::use_rhs) argw_off[k] = eid;
370
371
372
373
374
375
376
377
378
379
      }
    }
  }
}

}  // namespace cpu
}  // namespace aten
}  // namespace dgl

#endif  // DGL_ARRAY_CPU_SPMM_H_