entity_classify.py 5.94 KB
Newer Older
Lingfan Yu's avatar
Lingfan Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn

Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""

import argparse
import numpy as np
import time
import torch
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.contrib.data import load_data
import dgl.function as fn
from functools import partial

from layers import RGCNBasisLayer as RGCNLayer
from model import BaseRGCN

class EntityClassify(BaseRGCN):
    def create_features(self):
        features = torch.arange(self.num_nodes)
        if self.use_cuda:
            features = features.cuda()
        return features

    def build_input_layer(self):
        return RGCNLayer(self.num_nodes, self.h_dim, self.num_rels, self.num_bases,
                         activation=F.relu, is_input_layer=True)

    def build_hidden_layer(self, idx):
        return RGCNLayer(self.h_dim, self.h_dim, self.num_rels, self.num_bases,
                         activation=F.relu)

    def build_output_layer(self):
        return RGCNLayer(self.h_dim, self.out_dim, self.num_rels,self.num_bases,
                         activation=partial(F.softmax, dim=1))

def main(args):
    # load graph data
    data = load_data(args.dataset, bfs_level=args.bfs_level, relabel=args.relabel)
    num_nodes = data.num_nodes
    num_rels = data.num_rels
    num_classes = data.num_classes
    labels = data.labels
    train_idx = data.train_idx
    test_idx = data.test_idx

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # edge type and normalization factor
    edge_type = torch.from_numpy(data.edge_type)
    edge_norm = torch.from_numpy(data.edge_norm).unsqueeze(1)
    labels = torch.from_numpy(labels).view(-1)

    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    if use_cuda:
        torch.cuda.set_device(args.gpu)
        edge_type = edge_type.cuda()
        edge_norm = edge_norm.cuda()
        labels = labels.cuda()

    # create graph
    g = DGLGraph()
    g.add_nodes(num_nodes)
    g.add_edges(data.edge_src, data.edge_dst)
    g.edata.update({'type': edge_type, 'norm': edge_norm})

    # create model
    model = EntityClassify(len(g),
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_cuda=use_cuda)

    if use_cuda:
        model.cuda()

    # optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []
    model.train()
    for epoch in range(args.n_epochs):
        optimizer.zero_grad()
        t0 = time.time()
        logits = model.forward(g)
        loss = F.cross_entropy(logits[train_idx], labels[train_idx])
        t1 = time.time()
        loss.backward()
        optimizer.step()
        t2 = time.time()

        forward_time.append(t1 - t0)
        backward_time.append(t2 - t1)
        print("Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
              format(epoch, forward_time[-1], backward_time[-1]))
        train_acc = torch.sum(logits[train_idx].argmax(dim=1) == labels[train_idx]).item() / len(train_idx)
        val_loss = F.cross_entropy(logits[val_idx], labels[val_idx])
        val_acc = torch.sum(logits[val_idx].argmax(dim=1) == labels[val_idx]).item() / len(val_idx)
        print("Train Accuracy: {:.4f} | Train Loss: {:.4f} | Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
              format(train_acc, loss.item(), val_acc, val_loss.item()))
    print()

    model.eval()
    logits = model.forward(g)
    test_loss = F.cross_entropy(logits[test_idx], labels[test_idx])
    test_acc = torch.sum(logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx)
    print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.item()))
    print()

    print("Mean forward time: {:4f}".format(np.mean(forward_time[len(forward_time) // 4:])))
    print("Mean backward time: {:4f}".format(np.mean(backward_time[len(backward_time) // 4:])))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--relabel", default=False, action='store_true',
            help="remove untouched nodes and relabel")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    args.bfs_level = args.n_layers + 1 # pruning used nodes for memory
    main(args)