""" Modeling Relational Data with Graph Convolutional Networks Paper: https://arxiv.org/abs/1703.06103 Code: https://github.com/tkipf/relational-gcn Difference compared to tkipf/relation-gcn * l2norm applied to all weights * remove nodes that won't be touched """ import argparse import numpy as np import time import torch import torch.nn.functional as F from dgl import DGLGraph from dgl.contrib.data import load_data import dgl.function as fn from functools import partial from layers import RGCNBasisLayer as RGCNLayer from model import BaseRGCN class EntityClassify(BaseRGCN): def create_features(self): features = torch.arange(self.num_nodes) if self.use_cuda: features = features.cuda() return features def build_input_layer(self): return RGCNLayer(self.num_nodes, self.h_dim, self.num_rels, self.num_bases, activation=F.relu, is_input_layer=True) def build_hidden_layer(self, idx): return RGCNLayer(self.h_dim, self.h_dim, self.num_rels, self.num_bases, activation=F.relu) def build_output_layer(self): return RGCNLayer(self.h_dim, self.out_dim, self.num_rels,self.num_bases, activation=partial(F.softmax, dim=1)) def main(args): # load graph data data = load_data(args.dataset, bfs_level=args.bfs_level, relabel=args.relabel) num_nodes = data.num_nodes num_rels = data.num_rels num_classes = data.num_classes labels = data.labels train_idx = data.train_idx test_idx = data.test_idx # split dataset into train, validate, test if args.validation: val_idx = train_idx[:len(train_idx) // 5] train_idx = train_idx[len(train_idx) // 5:] else: val_idx = train_idx # edge type and normalization factor edge_type = torch.from_numpy(data.edge_type) edge_norm = torch.from_numpy(data.edge_norm).unsqueeze(1) labels = torch.from_numpy(labels).view(-1) # check cuda use_cuda = args.gpu >= 0 and torch.cuda.is_available() if use_cuda: torch.cuda.set_device(args.gpu) edge_type = edge_type.cuda() edge_norm = edge_norm.cuda() labels = labels.cuda() # create graph g = DGLGraph() g.add_nodes(num_nodes) g.add_edges(data.edge_src, data.edge_dst) g.edata.update({'type': edge_type, 'norm': edge_norm}) # create model model = EntityClassify(len(g), args.n_hidden, num_classes, num_rels, num_bases=args.n_bases, num_hidden_layers=args.n_layers - 2, dropout=args.dropout, use_cuda=use_cuda) if use_cuda: model.cuda() # optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2norm) # training loop print("start training...") forward_time = [] backward_time = [] model.train() for epoch in range(args.n_epochs): optimizer.zero_grad() t0 = time.time() logits = model.forward(g) loss = F.cross_entropy(logits[train_idx], labels[train_idx]) t1 = time.time() loss.backward() optimizer.step() t2 = time.time() forward_time.append(t1 - t0) backward_time.append(t2 - t1) print("Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}". format(epoch, forward_time[-1], backward_time[-1])) train_acc = torch.sum(logits[train_idx].argmax(dim=1) == labels[train_idx]).item() / len(train_idx) val_loss = F.cross_entropy(logits[val_idx], labels[val_idx]) val_acc = torch.sum(logits[val_idx].argmax(dim=1) == labels[val_idx]).item() / len(val_idx) print("Train Accuracy: {:.4f} | Train Loss: {:.4f} | Validation Accuracy: {:.4f} | Validation loss: {:.4f}". format(train_acc, loss.item(), val_acc, val_loss.item())) print() model.eval() logits = model.forward(g) test_loss = F.cross_entropy(logits[test_idx], labels[test_idx]) test_acc = torch.sum(logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx) print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.item())) print() print("Mean forward time: {:4f}".format(np.mean(forward_time[len(forward_time) // 4:]))) print("Mean backward time: {:4f}".format(np.mean(backward_time[len(backward_time) // 4:]))) if __name__ == '__main__': parser = argparse.ArgumentParser(description='RGCN') parser.add_argument("--dropout", type=float, default=0, help="dropout probability") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden units") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=1e-2, help="learning rate") parser.add_argument("--n-bases", type=int, default=-1, help="number of filter weight matrices, default: -1 [use all]") parser.add_argument("--n-layers", type=int, default=2, help="number of propagation rounds") parser.add_argument("-e", "--n-epochs", type=int, default=50, help="number of training epochs") parser.add_argument("-d", "--dataset", type=str, required=True, help="dataset to use") parser.add_argument("--l2norm", type=float, default=0, help="l2 norm coef") parser.add_argument("--relabel", default=False, action='store_true', help="remove untouched nodes and relabel") fp = parser.add_mutually_exclusive_group(required=False) fp.add_argument('--validation', dest='validation', action='store_true') fp.add_argument('--testing', dest='validation', action='store_false') parser.set_defaults(validation=True) args = parser.parse_args() print(args) args.bfs_level = args.n_layers + 1 # pruning used nodes for memory main(args)