test_specialization.py 18 KB
Newer Older
1
import torch as th
2
3
import dgl
import dgl.function as fn
4
import utils as U
5

Minjie Wang's avatar
Minjie Wang committed
6
7
D = 5

8
def generate_graph():
9
    g = dgl.DGLGraph()
Minjie Wang's avatar
Minjie Wang committed
10
    g.add_nodes(10)
11
12
13
14
15
16
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
17
18
19
    g.set_n_repr({'f1' : th.randn(10,), 'f2' : th.randn(10, D)})
    weights = th.randn(17,)
    g.set_e_repr({'e1': weights, 'e2': th.unsqueeze(weights, 1)})
20
21
    return g

22
def test_v2v_update_all():
23
    def _test(fld):
24
25
        def message_func(edges):
            return {'m' : edges.src[fld]}
26

27
28
29
        def message_func_edge(edges):
            if len(edges.src[fld].shape) == 1:
                return {'m' : edges.src[fld] * edges.data['e1']}
30
            else:
31
                return {'m' : edges.src[fld] * edges.data['e2']}
32

33
34
        def reduce_func(nodes):
            return {fld : th.sum(nodes.mailbox['m'], 1)}
35

36
37
        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}
38
39
        g = generate_graph()
        # update all
40
        v1 = g.ndata[fld]
Minjie Wang's avatar
Minjie Wang committed
41
        g.update_all(fn.copy_src(src=fld, out='m'), fn.sum(msg='m', out=fld), apply_func)
42
        v2 = g.ndata[fld]
43
        g.set_n_repr({fld : v1})
Minjie Wang's avatar
Minjie Wang committed
44
        g.update_all(message_func, reduce_func, apply_func)
45
        v3 = g.ndata[fld]
46
        assert U.allclose(v2, v3)
47
        # update all with edge weights
48
        v1 = g.ndata[fld]
Minjie Wang's avatar
Minjie Wang committed
49
50
        g.update_all(fn.src_mul_edge(src=fld, edge='e1', out='m'),
                fn.sum(msg='m', out=fld), apply_func)
51
        v2 = g.ndata[fld]
52
        g.set_n_repr({fld : v1})
Minjie Wang's avatar
Minjie Wang committed
53
54
        g.update_all(fn.src_mul_edge(src=fld, edge='e2', out='m'),
                fn.sum(msg='m', out=fld), apply_func)
55
        v3 = g.ndata[fld]
56
        g.set_n_repr({fld : v1})
Minjie Wang's avatar
Minjie Wang committed
57
        g.update_all(message_func_edge, reduce_func, apply_func)
58
        v4 = g.ndata[fld]
59
60
        assert U.allclose(v2, v3)
        assert U.allclose(v3, v4)
61
62
63
64
65
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

66
def test_v2v_snr():
Minjie Wang's avatar
Minjie Wang committed
67
68
    u = th.tensor([0, 0, 0, 3, 4, 9])
    v = th.tensor([1, 2, 3, 9, 9, 0])
69
    def _test(fld):
70
71
        def message_func(edges):
            return {'m' : edges.src[fld]}
72

73
74
75
        def message_func_edge(edges):
            if len(edges.src[fld].shape) == 1:
                return {'m' : edges.src[fld] * edges.data['e1']}
76
            else:
77
                return {'m' : edges.src[fld] * edges.data['e2']}
78

79
80
        def reduce_func(nodes):
            return {fld : th.sum(nodes.mailbox['m'], 1)}
81

82
83
        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}
84
85
        g = generate_graph()
        # send and recv
86
87
        v1 = g.ndata[fld]
        g.send_and_recv((u, v), fn.copy_src(src=fld, out='m'),
Minjie Wang's avatar
Minjie Wang committed
88
                fn.sum(msg='m', out=fld), apply_func)
89
        v2 = g.ndata[fld]
90
        g.set_n_repr({fld : v1})
91
92
        g.send_and_recv((u, v), message_func, reduce_func, apply_func)
        v3 = g.ndata[fld]
93
        assert U.allclose(v2, v3)
94
        # send and recv with edge weights
95
96
        v1 = g.ndata[fld]
        g.send_and_recv((u, v), fn.src_mul_edge(src=fld, edge='e1', out='m'),
Minjie Wang's avatar
Minjie Wang committed
97
                fn.sum(msg='m', out=fld), apply_func)
98
        v2 = g.ndata[fld]
99
        g.set_n_repr({fld : v1})
100
        g.send_and_recv((u, v), fn.src_mul_edge(src=fld, edge='e2', out='m'),
Minjie Wang's avatar
Minjie Wang committed
101
                fn.sum(msg='m', out=fld), apply_func)
102
        v3 = g.ndata[fld]
103
        g.set_n_repr({fld : v1})
104
105
        g.send_and_recv((u, v), message_func_edge, reduce_func, apply_func)
        v4 = g.ndata[fld]
106
107
        assert U.allclose(v2, v3)
        assert U.allclose(v3, v4)
108
109
110
111
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

def test_v2v_pull():
    nodes = th.tensor([1, 2, 3, 9])
    def _test(fld):
        def message_func(edges):
            return {'m' : edges.src[fld]}

        def message_func_edge(edges):
            if len(edges.src[fld].shape) == 1:
                return {'m' : edges.src[fld] * edges.data['e1']}
            else:
                return {'m' : edges.src[fld] * edges.data['e2']}

        def reduce_func(nodes):
            return {fld : th.sum(nodes.mailbox['m'], 1)}

        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}
        g = generate_graph()
        # send and recv
        v1 = g.ndata[fld]
        g.pull(nodes, fn.copy_src(src=fld, out='m'), fn.sum(msg='m', out=fld), apply_func)
        v2 = g.ndata[fld]
        g.ndata[fld] = v1
        g.pull(nodes, message_func, reduce_func, apply_func)
        v3 = g.ndata[fld]
        assert U.allclose(v2, v3)
        # send and recv with edge weights
        v1 = g.ndata[fld]
        g.pull(nodes, fn.src_mul_edge(src=fld, edge='e1', out='m'),
               fn.sum(msg='m', out=fld), apply_func)
        v2 = g.ndata[fld]
        g.ndata[fld] = v1
        g.pull(nodes, fn.src_mul_edge(src=fld, edge='e2', out='m'),
               fn.sum(msg='m', out=fld), apply_func)
        v3 = g.ndata[fld]
        g.ndata[fld] = v1
        g.pull(nodes, message_func_edge, reduce_func, apply_func)
        v4 = g.ndata[fld]
        assert U.allclose(v2, v3)
        assert U.allclose(v3, v4)
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

159
def test_v2v_update_all_multi_fn():
160
161
    def message_func(edges):
        return {'m2': edges.src['f2']}
162

163
164
    def message_func_edge(edges):
        return {'m2': edges.src['f2'] * edges.data['e2']}
165

166
    def reduce_func(nodes):
167
        return {'v1': th.sum(nodes.mailbox['m2'], 1)}
168
169

    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
170
    g.set_n_repr({'v1' : th.zeros((10,)), 'v2' : th.zeros((10,))})
171
172
    fld = 'f2'

173
    g.update_all(message_func, reduce_func)
174
    v1 = g.ndata['v1']
175

Minjie Wang's avatar
Minjie Wang committed
176
    # 1 message, 2 reduces
177
    g.update_all(fn.copy_src(src=fld, out='m'), [fn.sum(msg='m', out='v2'), fn.sum(msg='m', out='v3')])
178
179
    v2 = g.ndata['v2']
    v3 = g.ndata['v3']
180
181
    assert U.allclose(v1, v2)
    assert U.allclose(v1, v3)
182
183
184

    # update all with edge weights, 2 message, 3 reduces
    g.update_all([fn.src_mul_edge(src=fld, edge='e1', out='m1'), fn.src_mul_edge(src=fld, edge='e2', out='m2')],
Minjie Wang's avatar
Minjie Wang committed
185
                 [fn.sum(msg='m1', out='v1'), fn.sum(msg='m2', out='v2'), fn.sum(msg='m1', out='v3')],
Minjie Wang's avatar
Minjie Wang committed
186
                 None)
187
188
189
    v1 = g.ndata['v1']
    v2 = g.ndata['v2']
    v3 = g.ndata['v3']
190
191
    assert U.allclose(v1, v2)
    assert U.allclose(v1, v3)
192
193

    # run UDF with single message and reduce
Minjie Wang's avatar
Minjie Wang committed
194
    g.update_all(message_func_edge, reduce_func, None)
195
    v2 = g.ndata['v2']
196
    assert U.allclose(v1, v2)
197

198
def test_v2v_snr_multi_fn():
199
200
201
    u = th.tensor([0, 0, 0, 3, 4, 9])
    v = th.tensor([1, 2, 3, 9, 9, 0])

202
203
    def message_func(edges):
        return {'m2': edges.src['f2']}
204

205
206
    def message_func_edge(edges):
        return {'m2': edges.src['f2'] * edges.data['e2']}
207

208
    def reduce_func(nodes):
209
        return {'v1' : th.sum(nodes.mailbox['m2'], 1)}
210
211

    g = generate_graph()
Minjie Wang's avatar
Minjie Wang committed
212
213
    g.set_n_repr({'v1' : th.zeros((10, D)), 'v2' : th.zeros((10, D)),
        'v3' : th.zeros((10, D))})
214
215
    fld = 'f2'

216
    g.send_and_recv((u, v), message_func, reduce_func)
217
    v1 = g.ndata['v1']
218

Minjie Wang's avatar
Minjie Wang committed
219
    # 1 message, 2 reduces
220
    g.send_and_recv((u, v),
Minjie Wang's avatar
Minjie Wang committed
221
222
223
            fn.copy_src(src=fld, out='m'),
            [fn.sum(msg='m', out='v2'), fn.sum(msg='m', out='v3')],
            None)
224
225
    v2 = g.ndata['v2']
    v3 = g.ndata['v3']
226
227
    assert U.allclose(v1, v2)
    assert U.allclose(v1, v3)
228
229

    # send and recv with edge weights, 2 message, 3 reduces
230
    g.send_and_recv((u, v),
231
                    [fn.src_mul_edge(src=fld, edge='e1', out='m1'), fn.src_mul_edge(src=fld, edge='e2', out='m2')],
Minjie Wang's avatar
Minjie Wang committed
232
                    [fn.sum(msg='m1', out='v1'), fn.sum(msg='m2', out='v2'), fn.sum(msg='m1', out='v3')],
Minjie Wang's avatar
Minjie Wang committed
233
                    None)
234
235
236
    v1 = g.ndata['v1']
    v2 = g.ndata['v2']
    v3 = g.ndata['v3']
237
238
    assert U.allclose(v1, v2)
    assert U.allclose(v1, v3)
239
240

    # run UDF with single message and reduce
241
    g.send_and_recv((u, v), message_func_edge,
Minjie Wang's avatar
Minjie Wang committed
242
            reduce_func, None)
243
    v2 = g.ndata['v2']
244
    assert U.allclose(v1, v2)
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
def test_e2v_update_all_multi_fn():
    def _test(fld):
        def message_func(edges):
            return {'m1' : edges.src[fld] + edges.dst[fld],
                    'm2' : edges.src[fld] * edges.dst[fld]}

        def reduce_func(nodes):
            return {fld : th.sum(nodes.mailbox['m1'] + nodes.mailbox['m2'], 1)}

        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}

        def apply_func_2(nodes):
            return {fld : 2 * nodes.data['r1'] + 2 * nodes.data['r2']}

        g = generate_graph()
        # update all
        v1 = g.get_n_repr()[fld]
        # no specialization
        g.update_all(message_func, reduce_func, apply_func)
        v2 = g.get_n_repr()[fld]

        # user break reduce func into 2 builtin
        g.set_n_repr({fld : v1})
        g.update_all(message_func,
                     [fn.sum(msg='m1', out='r1'), fn.sum(msg='m2', out='r2')],
                     apply_func_2)
        v3 = g.get_n_repr()[fld]

        assert th.allclose(v2, v3)

    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

def test_e2v_snr_multi_fn():
    u = th.tensor([0, 0, 0, 3, 4, 9])
    v = th.tensor([1, 2, 3, 9, 9, 0])
    def _test(fld):
        def message_func(edges):
            return {'m1' : edges.src[fld] + edges.dst[fld],
                    'm2' : edges.src[fld] * edges.dst[fld]}

        def reduce_func(nodes):
            return {fld : th.sum(nodes.mailbox['m1'] + nodes.mailbox['m2'], 1)}

        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}

        def apply_func_2(nodes):
            return {fld : 2 * nodes.data['r1'] + 2 * nodes.data['r2']}

        g = generate_graph()
        # send_and_recv
        v1 = g.get_n_repr()[fld]
        # no specialization
        g.send_and_recv((u, v), message_func, reduce_func, apply_func)
        v2 = g.get_n_repr()[fld]

        # user break reduce func into 2 builtin
        g.set_n_repr({fld : v1})
        g.send_and_recv((u, v), message_func,
                        [fn.sum(msg='m1', out='r1'), fn.sum(msg='m2', out='r2')],
                        apply_func_2)
        v3 = g.get_n_repr()[fld]

        assert th.allclose(v2, v3)

    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

def test_e2v_recv_multi_fn():
    u = th.tensor([0, 0, 0, 3, 4, 9])
    v = th.tensor([1, 2, 3, 9, 9, 0])
    def _test(fld):
        def message_func(edges):
            return {'m1' : edges.src[fld] + edges.dst[fld],
                    'm2' : edges.src[fld] * edges.dst[fld]}

        def reduce_func(nodes):
            return {fld : th.sum(nodes.mailbox['m1'] + nodes.mailbox['m2'], 1)}

        def apply_func(nodes):
            return {fld : 2 * nodes.data[fld]}

        def apply_func_2(nodes):
            return {fld : 2 * nodes.data['r1'] + 2 * nodes.data['r2']}

        g = generate_graph()
        # recv
        v1 = g.get_n_repr()[fld]
        # no specialization
        g.send((u, v), message_func)
        g.recv([0,1,2,3,9], reduce_func, apply_func)
        v2 = g.get_n_repr()[fld]

        # user break reduce func into 2 builtin
        g.set_n_repr({fld : v1})
        g.send((u, v), message_func)
        g.recv([0,1,2,3,9],
               [fn.sum(msg='m1', out='r1'), fn.sum(msg='m2', out='r2')],
               apply_func_2)
        v3 = g.get_n_repr()[fld]

        assert th.allclose(v2, v3)

    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

360
def test_update_all_multi_fallback():
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    # create a graph with zero in degree nodes
    g = dgl.DGLGraph()
    g.add_nodes(10)
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    g.ndata['h'] = th.randn(10, D)
    g.edata['w1'] = th.randn(16,)
    g.edata['w2'] = th.randn(16, D)
    def _mfunc_hxw1(edges):
        return {'m1' : edges.src['h'] * th.unsqueeze(edges.data['w1'], 1)}
    def _mfunc_hxw2(edges):
        return {'m2' : edges.src['h'] * edges.data['w2']}
    def _rfunc_m1(nodes):
        return {'o1' : th.sum(nodes.mailbox['m1'], 1)}
    def _rfunc_m2(nodes):
        return {'o2' : th.sum(nodes.mailbox['m2'], 1)}
    def _rfunc_m1max(nodes):
        return {'o3' : th.max(nodes.mailbox['m1'], 1)[0]}
    def _afunc(nodes):
        ret = {}
        for k, v in nodes.data.items():
            if k.startswith('o'):
                ret[k] = 2 * v
        return ret
    # compute ground truth
    g.update_all(_mfunc_hxw1, _rfunc_m1, _afunc)
    o1 = g.ndata.pop('o1')
    g.update_all(_mfunc_hxw2, _rfunc_m2, _afunc)
    o2 = g.ndata.pop('o2')
    g.update_all(_mfunc_hxw1, _rfunc_m1max, _afunc)
    o3 = g.ndata.pop('o3')
    # v2v spmv
    g.update_all(fn.src_mul_edge(src='h', edge='w1', out='m1'),
                 fn.sum(msg='m1', out='o1'),
                 _afunc)
    assert U.allclose(o1, g.ndata.pop('o1'))
    # v2v fallback to e2v
    g.update_all(fn.src_mul_edge(src='h', edge='w2', out='m2'),
                 fn.sum(msg='m2', out='o2'),
                 _afunc)
    assert U.allclose(o2, g.ndata.pop('o2'))
    # v2v fallback to degree bucketing
    g.update_all(fn.src_mul_edge(src='h', edge='w1', out='m1'),
                 fn.max(msg='m1', out='o3'),
                 _afunc)
    assert U.allclose(o3, g.ndata.pop('o3'))
    # multi builtins, both v2v spmv
    g.update_all([fn.src_mul_edge(src='h', edge='w1', out='m1'), fn.src_mul_edge(src='h', edge='w1', out='m2')],
                 [fn.sum(msg='m1', out='o1'), fn.sum(msg='m2', out='o2')],
                 _afunc)
    assert U.allclose(o1, g.ndata.pop('o1'))
    assert U.allclose(o1, g.ndata.pop('o2'))
    # multi builtins, one v2v spmv, one fallback to e2v
    g.update_all([fn.src_mul_edge(src='h', edge='w1', out='m1'), fn.src_mul_edge(src='h', edge='w2', out='m2')],
                 [fn.sum(msg='m1', out='o1'), fn.sum(msg='m2', out='o2')],
                 _afunc)
    assert U.allclose(o1, g.ndata.pop('o1'))
    assert U.allclose(o2, g.ndata.pop('o2'))
    # multi builtins, one v2v spmv, one fallback to e2v, one fallback to degree-bucketing
    g.update_all([fn.src_mul_edge(src='h', edge='w1', out='m1'),
                  fn.src_mul_edge(src='h', edge='w2', out='m2'),
                  fn.src_mul_edge(src='h', edge='w1', out='m3')],
                 [fn.sum(msg='m1', out='o1'),
                  fn.sum(msg='m2', out='o2'),
                  fn.max(msg='m3', out='o3')],
                 _afunc)
    assert U.allclose(o1, g.ndata.pop('o1'))
    assert U.allclose(o2, g.ndata.pop('o2'))
    assert U.allclose(o3, g.ndata.pop('o3'))

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

def test_pull_multi_fallback():
    # create a graph with zero in degree nodes
    g = dgl.DGLGraph()
    g.add_nodes(10)
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    g.ndata['h'] = th.randn(10, D)
    g.edata['w1'] = th.randn(16,)
    g.edata['w2'] = th.randn(16, D)
    def _mfunc_hxw1(edges):
        return {'m1' : edges.src['h'] * th.unsqueeze(edges.data['w1'], 1)}
    def _mfunc_hxw2(edges):
        return {'m2' : edges.src['h'] * edges.data['w2']}
    def _rfunc_m1(nodes):
        return {'o1' : th.sum(nodes.mailbox['m1'], 1)}
    def _rfunc_m2(nodes):
        return {'o2' : th.sum(nodes.mailbox['m2'], 1)}
    def _rfunc_m1max(nodes):
        return {'o3' : th.max(nodes.mailbox['m1'], 1)[0]}
    def _afunc(nodes):
        ret = {}
        for k, v in nodes.data.items():
            if k.startswith('o'):
                ret[k] = 2 * v
        return ret
    # nodes to pull
    def _pull_nodes(nodes):
        # compute ground truth
        g.pull(nodes, _mfunc_hxw1, _rfunc_m1, _afunc)
        o1 = g.ndata.pop('o1')
        g.pull(nodes, _mfunc_hxw2, _rfunc_m2, _afunc)
        o2 = g.ndata.pop('o2')
        g.pull(nodes, _mfunc_hxw1, _rfunc_m1max, _afunc)
        o3 = g.ndata.pop('o3')
        # v2v spmv
        g.pull(nodes, fn.src_mul_edge(src='h', edge='w1', out='m1'),
                     fn.sum(msg='m1', out='o1'),
                     _afunc)
        assert U.allclose(o1, g.ndata.pop('o1'))
        # v2v fallback to e2v
        g.pull(nodes, fn.src_mul_edge(src='h', edge='w2', out='m2'),
                     fn.sum(msg='m2', out='o2'),
                     _afunc)
        assert U.allclose(o2, g.ndata.pop('o2'))
        # v2v fallback to degree bucketing
        g.pull(nodes, fn.src_mul_edge(src='h', edge='w1', out='m1'),
                     fn.max(msg='m1', out='o3'),
                     _afunc)
        assert U.allclose(o3, g.ndata.pop('o3'))
        # multi builtins, both v2v spmv
        g.pull(nodes,
               [fn.src_mul_edge(src='h', edge='w1', out='m1'), fn.src_mul_edge(src='h', edge='w1', out='m2')],
               [fn.sum(msg='m1', out='o1'), fn.sum(msg='m2', out='o2')],
               _afunc)
        assert U.allclose(o1, g.ndata.pop('o1'))
        assert U.allclose(o1, g.ndata.pop('o2'))
        # multi builtins, one v2v spmv, one fallback to e2v
        g.pull(nodes,
               [fn.src_mul_edge(src='h', edge='w1', out='m1'), fn.src_mul_edge(src='h', edge='w2', out='m2')],
               [fn.sum(msg='m1', out='o1'), fn.sum(msg='m2', out='o2')],
               _afunc)
        assert U.allclose(o1, g.ndata.pop('o1'))
        assert U.allclose(o2, g.ndata.pop('o2'))
        # multi builtins, one v2v spmv, one fallback to e2v, one fallback to degree-bucketing
        g.pull(nodes,
               [fn.src_mul_edge(src='h', edge='w1', out='m1'),
                fn.src_mul_edge(src='h', edge='w2', out='m2'),
                fn.src_mul_edge(src='h', edge='w1', out='m3')],
               [fn.sum(msg='m1', out='o1'),
                fn.sum(msg='m2', out='o2'),
                fn.max(msg='m3', out='o3')],
               _afunc)
        assert U.allclose(o1, g.ndata.pop('o1'))
        assert U.allclose(o2, g.ndata.pop('o2'))
        assert U.allclose(o3, g.ndata.pop('o3'))
    # test#1: non-0deg nodes
    nodes = [1, 2, 9]
    _pull_nodes(nodes)
    # test#2: 0deg nodes + non-0deg nodes
    nodes = [0, 1, 2, 9]
    _pull_nodes(nodes)

516
if __name__ == '__main__':
517
518
    test_v2v_update_all()
    test_v2v_snr()
519
    test_v2v_pull()
520
521
522
523
524
    test_v2v_update_all_multi_fn()
    test_v2v_snr_multi_fn()
    test_e2v_update_all_multi_fn()
    test_e2v_snr_multi_fn()
    test_e2v_recv_multi_fn()
525
526
    test_update_all_multi_fallback()
    test_pull_multi_fallback()