".github/vscode:/vscode.git/clone" did not exist on "f96c42fca53230057b16941b078a0a9eee06e20f"
test_specialization.py 7.35 KB
Newer Older
1
import torch as th
Minjie Wang's avatar
Minjie Wang committed
2
import numpy as np
3
4
import dgl
import dgl.function as fn
5

Minjie Wang's avatar
Minjie Wang committed
6
7
D = 5

8
def generate_graph():
9
    g = dgl.DGLGraph()
Minjie Wang's avatar
Minjie Wang committed
10
    g.add_nodes(10)
11
12
13
14
15
16
    # create a graph where 0 is the source and 9 is the sink
    for i in range(1, 9):
        g.add_edge(0, i)
        g.add_edge(i, 9)
    # add a back flow from 9 to 0
    g.add_edge(9, 0)
17
18
19
    g.set_n_repr({'f1' : th.randn(10,), 'f2' : th.randn(10, D)})
    weights = th.randn(17,)
    g.set_e_repr({'e1': weights, 'e2': th.unsqueeze(weights, 1)})
20
21
    return g

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def test_update_all():
    def _test(fld):
        def message_func(hu, edge):
            return hu[fld]

        def message_func_edge(hu, edge):
            if len(hu[fld].shape) == 1:
                return hu[fld] * edge['e1']
            else:
                return hu[fld] * edge['e2']

        def reduce_func(hv, msgs):
            return {fld : th.sum(msgs, 1)}

        def apply_func(hu):
            return {fld : 2 * hu[fld]}
        g = generate_graph()
        # update all
        v1 = g.get_n_repr()[fld]
        g.update_all(fn.copy_src(src=fld), fn.sum(out=fld), apply_func, batchable=True)
        v2 = g.get_n_repr()[fld]
        g.set_n_repr({fld : v1})
        g.update_all(message_func, reduce_func, apply_func, batchable=True)
        v3 = g.get_n_repr()[fld]
        assert th.allclose(v2, v3)
        # update all with edge weights
        v1 = g.get_n_repr()[fld]
        g.update_all(fn.src_mul_edge(src=fld, edge='e1'),
                fn.sum(out=fld), apply_func, batchable=True)
        v2 = g.get_n_repr()[fld]
        g.set_n_repr({fld : v1})
        g.update_all(fn.src_mul_edge(src=fld, edge='e2'),
                fn.sum(out=fld), apply_func, batchable=True)
        v3 = g.get_n_repr()[fld]
        g.set_n_repr({fld : v1})
        g.update_all(message_func_edge, reduce_func, apply_func, batchable=True)
        v4 = g.get_n_repr()[fld]
        assert th.allclose(v2, v3)
        assert th.allclose(v3, v4)
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')

def test_send_and_recv():
Minjie Wang's avatar
Minjie Wang committed
67
68
    u = th.tensor([0, 0, 0, 3, 4, 9])
    v = th.tensor([1, 2, 3, 9, 9, 0])
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    def _test(fld):
        def message_func(hu, edge):
            return hu[fld]

        def message_func_edge(hu, edge):
            if len(hu[fld].shape) == 1:
                return hu[fld] * edge['e1']
            else:
                return hu[fld] * edge['e2']

        def reduce_func(hv, msgs):
            return {fld : th.sum(msgs, 1)}

        def apply_func(hu):
            return {fld : 2 * hu[fld]}
        g = generate_graph()
        # send and recv
        v1 = g.get_n_repr()[fld]
        g.send_and_recv(u, v, fn.copy_src(src=fld),
                fn.sum(out=fld), apply_func, batchable=True)
        v2 = g.get_n_repr()[fld]
        g.set_n_repr({fld : v1})
        g.send_and_recv(u, v, message_func,
                reduce_func, apply_func, batchable=True)
        v3 = g.get_n_repr()[fld]
        assert th.allclose(v2, v3)
        # send and recv with edge weights
        v1 = g.get_n_repr()[fld]
        g.send_and_recv(u, v, fn.src_mul_edge(src=fld, edge='e1'),
                fn.sum(out=fld), apply_func, batchable=True)
        v2 = g.get_n_repr()[fld]
        g.set_n_repr({fld : v1})
        g.send_and_recv(u, v, fn.src_mul_edge(src=fld, edge='e2'),
                fn.sum(out=fld), apply_func, batchable=True)
        v3 = g.get_n_repr()[fld]
        g.set_n_repr({fld : v1})
        g.send_and_recv(u, v, message_func_edge,
                reduce_func, apply_func, batchable=True)
        v4 = g.get_n_repr()[fld]
        assert th.allclose(v2, v3)
        assert th.allclose(v3, v4)
    # test 1d node features
    _test('f1')
    # test 2d node features
    _test('f2')
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def test_update_all_multi_fn():
    def message_func(hu, edge):
        return {'m2': hu['f2']}

    def message_func_edge(hu, edge):
        return {'m2': hu['f2'] * edge['e2']}

    def reduce_func(hv, msgs):
        return {'v2': th.sum(msgs['m2'], 1)}

    g = generate_graph()
    fld = 'f2'
    # update all, mix of builtin and UDF
    g.update_all([fn.copy_src(src=fld, out='m1'), message_func],
                 [fn.sum(msgs='m1', out='v1'), reduce_func],
                 None, batchable=True)
    v1 = g.get_n_repr()['v1']
    v2 = g.get_n_repr()['v2']
    assert th.allclose(v1, v2)

    # run builtin with single message and reduce
    g.update_all(fn.copy_src(src=fld), fn.sum(out='v1'), None, batchable=True)
    v1 = g.get_n_repr()['v1']
    assert th.allclose(v1, v2)

    # 1 message, 2 reduces, using anonymous repr
    g.update_all(fn.copy_src(src=fld), [fn.sum(out='v2'), fn.sum(out='v3')], None, batchable=True)
    v2 = g.get_n_repr()['v2']
    v3 = g.get_n_repr()['v3']
    assert th.allclose(v1, v2)
    assert th.allclose(v1, v3)

    # update all with edge weights, 2 message, 3 reduces
    g.update_all([fn.src_mul_edge(src=fld, edge='e1', out='m1'), fn.src_mul_edge(src=fld, edge='e2', out='m2')],
                 [fn.sum(msgs='m1', out='v1'), fn.sum(msgs='m2', out='v2'), fn.sum(msgs='m1', out='v3')],
                 None, batchable=True)
    v1 = g.get_n_repr()['v1']
    v2 = g.get_n_repr()['v2']
    v3 = g.get_n_repr()['v3']
    assert th.allclose(v1, v2)
    assert th.allclose(v1, v3)

    # run UDF with single message and reduce
    g.update_all(message_func_edge, reduce_func, None, batchable=True)
    v2 = g.get_n_repr()['v2']
    assert th.allclose(v1, v2)

def test_send_and_recv_multi_fn():
    u = th.tensor([0, 0, 0, 3, 4, 9])
    v = th.tensor([1, 2, 3, 9, 9, 0])

    def message_func(hu, edge):
        return {'m2': hu['f2']}

    def message_func_edge(hu, edge):
        return {'m2': hu['f2'] * edge['e2']}

    def reduce_func(hv, msgs):
        return {'v2' : th.sum(msgs['m2'], 1)}

    g = generate_graph()
    fld = 'f2'

    # send and recv, mix of builtin and UDF
    g.send_and_recv(u, v,
                    [fn.copy_src(src=fld, out='m1'), message_func],
                    [fn.sum(msgs='m1', out='v1'), reduce_func],
                    None, batchable=True)
    v1 = g.get_n_repr()['v1']
    v2 = g.get_n_repr()['v2']
    assert th.allclose(v1, v2)

    # run builtin with single message and reduce
    g.send_and_recv(u, v, fn.copy_src(src=fld), fn.sum(out='v1'),
                    None, batchable=True)
    v1 = g.get_n_repr()['v1']
    assert th.allclose(v1, v2)

    # 1 message, 2 reduces, using anonymous repr
    g.send_and_recv(u, v, fn.copy_src(src=fld), [fn.sum(out='v2'), fn.sum(out='v3')], None, batchable=True)
    v2 = g.get_n_repr()['v2']
    v3 = g.get_n_repr()['v3']
    assert th.allclose(v1, v2)
    assert th.allclose(v1, v3)

    # send and recv with edge weights, 2 message, 3 reduces
    g.send_and_recv(u, v,
                    [fn.src_mul_edge(src=fld, edge='e1', out='m1'), fn.src_mul_edge(src=fld, edge='e2', out='m2')],
                    [fn.sum(msgs='m1', out='v1'), fn.sum(msgs='m2', out='v2'), fn.sum(msgs='m1', out='v3')],
                    None, batchable=True)
    v1 = g.get_n_repr()['v1']
    v2 = g.get_n_repr()['v2']
    v3 = g.get_n_repr()['v3']
    assert th.allclose(v1, v2)
    assert th.allclose(v1, v3)

    # run UDF with single message and reduce
    g.send_and_recv(u, v, message_func_edge,
            reduce_func, None, batchable=True)
    v2 = g.get_n_repr()['v2']
    assert th.allclose(v1, v2)

217
if __name__ == '__main__':
218
    test_update_all()
219
    test_send_and_recv()
220
221
    test_update_all_multi_fn()
    test_send_and_recv_multi_fn()