test_heterograph-misc.py 16.7 KB
Newer Older
1
import math
2
import numbers
3
4
5
6
7

import backend as F

import dgl
import networkx as nx
8
import numpy as np
9
import pytest
10
import scipy.sparse as sp
11
from dgl import DGLError
12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
# graph generation: a random graph with 10 nodes
#  and 20 edges.
#  - has self loop
#  - no multi edge
def edge_pair_input(sort=False):
    if sort:
        src = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7, 9]
        dst = [4, 6, 9, 3, 5, 3, 7, 5, 8, 1, 3, 4, 9, 1, 9, 6, 2, 8, 9, 2]
        return src, dst
    else:
        src = [0, 0, 4, 5, 0, 4, 7, 4, 4, 3, 2, 7, 7, 5, 3, 2, 1, 9, 6, 1]
        dst = [9, 6, 3, 9, 4, 4, 9, 9, 1, 8, 3, 2, 8, 1, 5, 7, 3, 2, 6, 5]
        return src, dst

28

29
30
31
32
33
34
35
def nx_input():
    g = nx.DiGraph()
    src, dst = edge_pair_input()
    for i, e in enumerate(zip(src, dst)):
        g.add_edge(*e, id=i)
    return g

36

37
38
39
40
def elist_input():
    src, dst = edge_pair_input()
    return list(zip(src, dst))

41

42
43
def scipy_coo_input():
    src, dst = edge_pair_input()
44
45
    return sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10, 10))

46
47
48

def scipy_csr_input():
    src, dst = edge_pair_input()
49
    csr = sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10, 10)).tocsr()
50
51
52
53
54
    csr.sort_indices()
    # src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
    # dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
    return csr

55

56
57
58
59
60
61
62
def gen_by_mutation():
    g = dgl.DGLGraph()
    src, dst = edge_pair_input()
    g.add_nodes(10)
    g.add_edges(src, dst)
    return g

63

Da Zheng's avatar
Da Zheng committed
64
65
def gen_from_data(data, readonly, sort):
    return dgl.DGLGraph(data, readonly=readonly, sort_csr=True)
66

67

68
69
def test_query():
    def _test_one(g):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
70
71
        assert g.num_nodes() == 10
        assert g.num_edges() == 20
72
73

        for i in range(10):
74
75
            assert g.has_nodes(i)
        assert not g.has_nodes(11)
76
        assert F.allclose(g.has_nodes([0, 2, 10, 11]), F.tensor([1, 1, 0, 0]))
77
78
79

        src, dst = edge_pair_input()
        for u, v in zip(src, dst):
80
81
            assert g.has_edges_between(u, v)
        assert not g.has_edges_between(0, 0)
82
83
84
85
86
        assert F.allclose(
            g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0, 1, 1])
        )
        assert set(F.asnumpy(g.predecessors(9))) == set([0, 5, 7, 4])
        assert set(F.asnumpy(g.successors(2))) == set([7, 3])
87

88
89
        assert g.edge_ids(4, 4) == 5
        assert F.allclose(g.edge_ids([4, 0], [4, 9]), F.tensor([5, 0]))
90
91
92
93
94

        src, dst = g.find_edges([3, 6, 5])
        assert F.allclose(src, F.tensor([5, 7, 4]))
        assert F.allclose(dst, F.tensor([9, 9, 4]))

95
        src, dst, eid = g.in_edges(9, form="all")
96
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
97
98
99
100
        assert set(tup) == set([(0, 9, 0), (5, 9, 3), (7, 9, 6), (4, 9, 7)])
        src, dst, eid = g.in_edges(
            [9, 0, 8], form="all"
        )  # test node#0 has no in edges
101
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
102
103
104
        assert set(tup) == set(
            [(0, 9, 0), (5, 9, 3), (7, 9, 6), (4, 9, 7), (3, 8, 9), (7, 8, 12)]
        )
105

106
        src, dst, eid = g.out_edges(0, form="all")
107
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
108
109
110
111
        assert set(tup) == set([(0, 9, 0), (0, 6, 1), (0, 4, 4)])
        src, dst, eid = g.out_edges(
            [0, 4, 8], form="all"
        )  # test node#8 has no out edges
112
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
113
114
115
116
117
118
119
120
121
122
123
124
125
        assert set(tup) == set(
            [
                (0, 9, 0),
                (0, 6, 1),
                (0, 4, 4),
                (4, 3, 2),
                (4, 4, 5),
                (4, 9, 7),
                (4, 1, 8),
            ]
        )

        src, dst, eid = g.edges("all", "eid")
126
127
128
129
130
131
        t_src, t_dst = edge_pair_input()
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(eid)) == list(range(20))

132
        src, dst, eid = g.edges("all", "srcdst")
133
134
135
136
137
138
        t_src, t_dst = edge_pair_input()
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))

139
140
        assert g.in_degrees(0) == 0
        assert g.in_degrees(9) == 4
141
        assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
142
143
        assert g.out_degrees(8) == 0
        assert g.out_degrees(9) == 1
144
145
        assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))

Mufei Li's avatar
Mufei Li committed
146
        assert np.array_equal(
147
            F.sparse_to_numpy(g.adj_external(transpose=True)),
148
149
            scipy_coo_input().toarray().T,
        )
Mufei Li's avatar
Mufei Li committed
150
        assert np.array_equal(
151
            F.sparse_to_numpy(g.adj_external(transpose=False)),
152
153
            scipy_coo_input().toarray(),
        )
154
155
156
157
158
159
160

    def _test(g):
        # test twice to see whether the cached format works or not
        _test_one(g)
        _test_one(g)

    def _test_csr_one(g):
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
161
162
        assert g.num_nodes() == 10
        assert g.num_edges() == 20
163
164

        for i in range(10):
165
166
            assert g.has_nodes(i)
        assert not g.has_nodes(11)
167
        assert F.allclose(g.has_nodes([0, 2, 10, 11]), F.tensor([1, 1, 0, 0]))
168
169
170

        src, dst = edge_pair_input(sort=True)
        for u, v in zip(src, dst):
171
172
            assert g.has_edges_between(u, v)
        assert not g.has_edges_between(0, 0)
173
174
175
176
177
        assert F.allclose(
            g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0, 1, 1])
        )
        assert set(F.asnumpy(g.predecessors(9))) == set([0, 5, 7, 4])
        assert set(F.asnumpy(g.successors(2))) == set([7, 3])
178
179
180
181

        # src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
        # dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
        # eid = [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9]
182
183
        assert g.edge_ids(4, 4) == 11
        assert F.allclose(g.edge_ids([4, 0], [4, 9]), F.tensor([11, 2]))
184
185
186
187
188

        src, dst = g.find_edges([3, 6, 5])
        assert F.allclose(src, F.tensor([1, 2, 2]))
        assert F.allclose(dst, F.tensor([3, 7, 3]))

189
        src, dst, eid = g.in_edges(9, form="all")
190
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
191
192
193
194
        assert set(tup) == set([(0, 9, 2), (5, 9, 14), (7, 9, 18), (4, 9, 12)])
        src, dst, eid = g.in_edges(
            [9, 0, 8], form="all"
        )  # test node#0 has no in edges
195
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
196
197
198
199
200
201
202
203
204
205
206
207
        assert set(tup) == set(
            [
                (0, 9, 2),
                (5, 9, 14),
                (7, 9, 18),
                (4, 9, 12),
                (3, 8, 8),
                (7, 8, 17),
            ]
        )

        src, dst, eid = g.out_edges(0, form="all")
208
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
209
210
211
212
        assert set(tup) == set([(0, 9, 2), (0, 6, 1), (0, 4, 0)])
        src, dst, eid = g.out_edges(
            [0, 4, 8], form="all"
        )  # test node#8 has no out edges
213
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
214
215
216
217
218
219
220
221
222
223
224
225
226
        assert set(tup) == set(
            [
                (0, 9, 2),
                (0, 6, 1),
                (0, 4, 0),
                (4, 3, 10),
                (4, 4, 11),
                (4, 9, 12),
                (4, 1, 9),
            ]
        )

        src, dst, eid = g.edges("all", "eid")
227
228
229
230
231
232
        t_src, t_dst = edge_pair_input(sort=True)
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(eid)) == list(range(20))

233
        src, dst, eid = g.edges("all", "srcdst")
234
235
236
237
238
239
        t_src, t_dst = edge_pair_input(sort=True)
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))

240
241
        assert g.in_degrees(0) == 0
        assert g.in_degrees(9) == 4
242
        assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
243
244
        assert g.out_degrees(8) == 0
        assert g.out_degrees(9) == 1
245
246
        assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))

Mufei Li's avatar
Mufei Li committed
247
        assert np.array_equal(
248
            F.sparse_to_numpy(g.adj_external(transpose=True)),
249
250
            scipy_coo_input().toarray().T,
        )
Mufei Li's avatar
Mufei Li committed
251
        assert np.array_equal(
252
            F.sparse_to_numpy(g.adj_external(transpose=False)),
253
254
            scipy_coo_input().toarray(),
        )
255
256
257
258
259
260

    def _test_csr(g):
        # test twice to see whether the cached format works or not
        _test_csr_one(g)
        _test_csr_one(g)

261
262
    def _test_edge_ids():
        g = gen_by_mutation()
263
        eids = g.edge_ids([4, 0], [4, 9])
264
        assert eids.shape[0] == 2
265
        eid = g.edge_ids(4, 4)
266
267
        assert isinstance(eid, numbers.Number)
        with pytest.raises(DGLError):
268
            eids = g.edge_ids([9, 0], [4, 9])
269

270
        with pytest.raises(DGLError):
271
            eid = g.edge_ids(4, 5)
272

273
        g.add_edges(0, 4)
274
        eids = g.edge_ids([0, 0], [4, 9])
275
        eid = g.edge_ids(0, 4)
276

277
    _test(gen_by_mutation())
Da Zheng's avatar
Da Zheng committed
278
279
280
281
282
283
284
285
    _test(gen_from_data(elist_input(), False, False))
    _test(gen_from_data(elist_input(), True, False))
    _test(gen_from_data(elist_input(), True, True))
    _test(gen_from_data(scipy_coo_input(), False, False))
    _test(gen_from_data(scipy_coo_input(), True, False))

    _test_csr(gen_from_data(scipy_csr_input(), False, False))
    _test_csr(gen_from_data(scipy_csr_input(), True, False))
286
    _test_edge_ids()
287

288

289
def test_mutation():
290
    g = dgl.DGLGraph()
291
    g = g.to(F.ctx())
292
293
    # test add nodes with data
    g.add_nodes(5)
294
    g.add_nodes(5, {"h": F.ones((5, 2))})
295
    ans = F.cat([F.zeros((5, 2)), F.ones((5, 2))], 0)
296
297
298
    assert F.allclose(ans, g.ndata["h"])
    g.ndata["w"] = 2 * F.ones((10, 2))
    assert F.allclose(2 * F.ones((10, 2)), g.ndata["w"])
299
300
    # test add edges with data
    g.add_edges([2, 3], [3, 4])
301
    g.add_edges([0, 1], [1, 2], {"m": F.ones((2, 2))})
302
    ans = F.cat([F.zeros((2, 2)), F.ones((2, 2))], 0)
303
304
    assert F.allclose(ans, g.edata["m"])

305

306
307
308
309
310
def test_scipy_adjmat():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))

311
312
    adj_0 = g.adj_external(scipy_fmt="csr")
    adj_1 = g.adj_external(scipy_fmt="coo")
313
314
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

315
316
    adj_t0 = g.adj_external(transpose=False, scipy_fmt="csr")
    adj_t_1 = g.adj_external(transpose=False, scipy_fmt="coo")
317
318
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

319

320
321
322
def test_incmat():
    g = dgl.DGLGraph()
    g.add_nodes(4)
323
324
325
326
327
328
329
330
    g.add_edges(0, 1)  # 0
    g.add_edges(0, 2)  # 1
    g.add_edges(0, 3)  # 2
    g.add_edges(2, 3)  # 3
    g.add_edges(1, 1)  # 4
    inc_in = F.sparse_to_numpy(g.incidence_matrix("in"))
    inc_out = F.sparse_to_numpy(g.incidence_matrix("out"))
    inc_both = F.sparse_to_numpy(g.incidence_matrix("both"))
331
332
333
334
    print(inc_in)
    print(inc_out)
    print(inc_both)
    assert np.allclose(
335
336
337
338
339
340
341
342
343
344
        inc_in,
        np.array(
            [
                [0.0, 0.0, 0.0, 0.0, 0.0],
                [1.0, 0.0, 0.0, 0.0, 1.0],
                [0.0, 1.0, 0.0, 0.0, 0.0],
                [0.0, 0.0, 1.0, 1.0, 0.0],
            ]
        ),
    )
345
    assert np.allclose(
346
347
348
349
350
351
352
353
354
355
        inc_out,
        np.array(
            [
                [1.0, 1.0, 1.0, 0.0, 0.0],
                [0.0, 0.0, 0.0, 0.0, 1.0],
                [0.0, 0.0, 0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0, 0.0, 0.0],
            ]
        ),
    )
356
    assert np.allclose(
357
358
359
360
361
362
363
364
365
366
367
        inc_both,
        np.array(
            [
                [-1.0, -1.0, -1.0, 0.0, 0.0],
                [1.0, 0.0, 0.0, 0.0, 0.0],
                [0.0, 1.0, 0.0, -1.0, 0.0],
                [0.0, 0.0, 1.0, 1.0, 0.0],
            ]
        ),
    )

368

369
370
371
372
373
def test_find_edges():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))
    e = g.find_edges([1, 3, 2, 4])
374
375
376
377
378
379
380
381
382
383
384
385
    assert (
        F.asnumpy(e[0][0]) == 1
        and F.asnumpy(e[0][1]) == 3
        and F.asnumpy(e[0][2]) == 2
        and F.asnumpy(e[0][3]) == 4
    )
    assert (
        F.asnumpy(e[1][0]) == 2
        and F.asnumpy(e[1][1]) == 4
        and F.asnumpy(e[1][2]) == 3
        and F.asnumpy(e[1][3]) == 5
    )
386
387
388
389
390
391
392
393
394

    try:
        g.find_edges([10])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

395

396
397
398
399
400
401
402
403
404
405
406
def test_ismultigraph():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    assert g.is_multigraph == False
    g.add_edges([0], [0])
    assert g.is_multigraph == False
    g.add_edges([1], [2])
    assert g.is_multigraph == False
    g.add_edges([0, 2], [0, 3])
    assert g.is_multigraph == True

407

408
409
410
411
412
413
def test_hypersparse_query():
    g = dgl.DGLGraph()
    g = g.to(F.ctx())
    g.add_nodes(1000001)
    g.add_edges([0], [1])
    for i in range(10):
414
415
416
        assert g.has_nodes(i)
    assert not g.has_nodes(1000002)
    assert g.edge_ids(0, 1) == 0
417
    src, dst = g.find_edges([0])
418
419
    src, dst, eid = g.in_edges(1, form="all")
    src, dst, eid = g.out_edges(0, form="all")
420
    src, dst = g.edges()
421
422
423
424
    assert g.in_degrees(0) == 0
    assert g.in_degrees(1) == 1
    assert g.out_degrees(0) == 1
    assert g.out_degrees(1) == 0
425

426

427
428
429
430
431
432
433
434
def test_empty_data_initialized():
    g = dgl.DGLGraph()
    g = g.to(F.ctx())
    g.ndata["ha"] = F.tensor([])
    g.add_nodes(1, {"hb": F.tensor([1])})
    assert "ha" in g.ndata
    assert len(g.ndata["ha"]) == 1

435

436
def test_is_sorted():
437
438
    u_src, u_dst = edge_pair_input(False)
    s_src, s_dst = edge_pair_input(True)
439

440
441
442
443
    u_src = F.tensor(u_src, dtype=F.int32)
    u_dst = F.tensor(u_dst, dtype=F.int32)
    s_src = F.tensor(s_src, dtype=F.int32)
    s_dst = F.tensor(s_dst, dtype=F.int32)
444

445
446
447
    src_sorted, dst_sorted = dgl.utils.is_sorted_srcdst(u_src, u_dst)
    assert src_sorted == False
    assert dst_sorted == False
448

449
450
451
    src_sorted, dst_sorted = dgl.utils.is_sorted_srcdst(s_src, s_dst)
    assert src_sorted == True
    assert dst_sorted == True
452

453
454
455
    src_sorted, dst_sorted = dgl.utils.is_sorted_srcdst(u_src, u_dst)
    assert src_sorted == False
    assert dst_sorted == False
456

457
458
459
    src_sorted, dst_sorted = dgl.utils.is_sorted_srcdst(s_src, u_dst)
    assert src_sorted == True
    assert dst_sorted == False
460

461
462
463
464
465
466
467

def test_default_types():
    dg = dgl.DGLGraph()
    g = dgl.graph(([], []))
    assert dg.ntypes == g.ntypes
    assert dg.etypes == g.etypes

468
469
470
471
472
473
474
475

def test_formats():
    g = dgl.rand_graph(10, 20)
    # in_degrees works if coo or csc available
    # out_degrees works if coo or csr available
    try:
        g.in_degrees()
        g.out_degrees()
476
477
478
479
        g.formats("coo").in_degrees()
        g.formats("coo").out_degrees()
        g.formats("csc").in_degrees()
        g.formats("csr").out_degrees()
480
481
482
483
484
485
486
        fail = False
    except DGLError:
        fail = True
    finally:
        assert not fail
    # in_degrees NOT works if csc available only
    try:
487
        g.formats("csc").out_degrees()
488
489
490
491
492
493
494
        fail = True
    except DGLError:
        fail = False
    finally:
        assert not fail
    # out_degrees NOT works if csr available only
    try:
495
        g.formats("csr").in_degrees()
496
497
498
499
500
        fail = True
    except DGLError:
        fail = False
    finally:
        assert not fail
501

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    # If the intersection of created formats and allowed formats is
    # not empty, then retain the intersection.
    # Case1: intersection is not empty and intersected is equal to
    # created formats.
    g = g.formats(["coo", "csr"])
    g.create_formats_()
    g = g.formats(["coo", "csr", "csc"])
    assert sorted(g.formats()["created"]) == sorted(["coo", "csr"])
    assert sorted(g.formats()["not created"]) == sorted(["csc"])

    # Case2: intersection is not empty and intersected is not equal
    # to created formats.
    g = g.formats(["coo", "csr"])
    g.create_formats_()
    g = g.formats(["coo", "csc"])
    assert sorted(g.formats()["created"]) == sorted(["coo"])
    assert sorted(g.formats()["not created"]) == sorted(["csc"])

    # If the intersection of created formats and allowed formats is
    # empty, then create a format in the order of `coo` -> `csr` ->
    # `csc`.
    # Case1: intersection is empty and just one format is allowed.
    g = g.formats(["coo", "csr"])
    g.create_formats_()
    g = g.formats(["csc"])
    assert sorted(g.formats()["created"]) == sorted(["csc"])
    assert sorted(g.formats()["not created"]) == sorted([])

    # Case2: intersection is empty and more than one format is allowed.
    g = g.formats("csc")
    g.create_formats_()
    g = g.formats(["csr", "coo"])
    assert sorted(g.formats()["created"]) == sorted(["coo"])
    assert sorted(g.formats()["not created"]) == sorted(["csr"])

537
538

if __name__ == "__main__":
539
540
    test_query()
    test_mutation()
541
    test_scipy_adjmat()
542
    test_incmat()
543
    test_find_edges()
544
    test_hypersparse_query()
545
    test_is_sorted()
546
    test_default_types()
547
    test_formats()