".github/vscode:/vscode.git/clone" did not exist on "119ad2c3dc8a8fb8446a83f4bf6f20929487b47f"
test_heterograph-misc.py 14.2 KB
Newer Older
1
import math
2
import numbers
3
4
import numpy as np
import scipy.sparse as sp
5
import networkx as nx
6
import dgl
7
import backend as F
8
from dgl import DGLError
9
import pytest
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# graph generation: a random graph with 10 nodes
#  and 20 edges.
#  - has self loop
#  - no multi edge
def edge_pair_input(sort=False):
    if sort:
        src = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7, 9]
        dst = [4, 6, 9, 3, 5, 3, 7, 5, 8, 1, 3, 4, 9, 1, 9, 6, 2, 8, 9, 2]
        return src, dst
    else:
        src = [0, 0, 4, 5, 0, 4, 7, 4, 4, 3, 2, 7, 7, 5, 3, 2, 1, 9, 6, 1]
        dst = [9, 6, 3, 9, 4, 4, 9, 9, 1, 8, 3, 2, 8, 1, 5, 7, 3, 2, 6, 5]
        return src, dst

def nx_input():
    g = nx.DiGraph()
    src, dst = edge_pair_input()
    for i, e in enumerate(zip(src, dst)):
        g.add_edge(*e, id=i)
    return g

def elist_input():
    src, dst = edge_pair_input()
    return list(zip(src, dst))

def scipy_coo_input():
    src, dst = edge_pair_input()
    return sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10,10))

def scipy_csr_input():
    src, dst = edge_pair_input()
    csr = sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10,10)).tocsr()
    csr.sort_indices()
    # src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
    # dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
    return csr

def gen_by_mutation():
    g = dgl.DGLGraph()
    src, dst = edge_pair_input()
    g.add_nodes(10)
    g.add_edges(src, dst)
    return g

Da Zheng's avatar
Da Zheng committed
55
56
def gen_from_data(data, readonly, sort):
    return dgl.DGLGraph(data, readonly=readonly, sort_csr=True)
57
58
59
60
61
62
63

def test_query():
    def _test_one(g):
        assert g.number_of_nodes() == 10
        assert g.number_of_edges() == 20

        for i in range(10):
64
65
            assert g.has_nodes(i)
        assert not g.has_nodes(11)
66
        assert F.allclose(g.has_nodes([0,2,10,11]), F.tensor([1,1,0,0]))
67
68
69

        src, dst = edge_pair_input()
        for u, v in zip(src, dst):
70
71
            assert g.has_edges_between(u, v)
        assert not g.has_edges_between(0, 0)
72
73
74
75
        assert F.allclose(g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0,1,1]))
        assert set(F.asnumpy(g.predecessors(9))) == set([0,5,7,4])
        assert set(F.asnumpy(g.successors(2))) == set([7,3])

76
        assert g.edge_ids(4,4) == 5
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        assert F.allclose(g.edge_ids([4,0], [4,9]), F.tensor([5,0]))

        src, dst = g.find_edges([3, 6, 5])
        assert F.allclose(src, F.tensor([5, 7, 4]))
        assert F.allclose(dst, F.tensor([9, 9, 4]))

        src, dst, eid = g.in_edges(9, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(5,9,3),(7,9,6),(4,9,7)])
        src, dst, eid = g.in_edges([9,0,8], form='all')  # test node#0 has no in edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(5,9,3),(7,9,6),(4,9,7),(3,8,9),(7,8,12)])

        src, dst, eid = g.out_edges(0, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(0,6,1),(0,4,4)])
        src, dst, eid = g.out_edges([0,4,8], form='all')  # test node#8 has no out edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(0,6,1),(0,4,4),(4,3,2),(4,4,5),(4,9,7),(4,1,8)])

        src, dst, eid = g.edges('all', 'eid')
        t_src, t_dst = edge_pair_input()
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(eid)) == list(range(20))

        src, dst, eid = g.edges('all', 'srcdst')
        t_src, t_dst = edge_pair_input()
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))

111
112
        assert g.in_degrees(0) == 0
        assert g.in_degrees(9) == 4
113
        assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
114
115
        assert g.out_degrees(8) == 0
        assert g.out_degrees(9) == 1
116
117
        assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))

Mufei Li's avatar
Mufei Li committed
118
        assert np.array_equal(
119
                F.sparse_to_numpy(g.adjacency_matrix(transpose=True)), scipy_coo_input().toarray().T)
Mufei Li's avatar
Mufei Li committed
120
        assert np.array_equal(
121
                F.sparse_to_numpy(g.adjacency_matrix(transpose=False)), scipy_coo_input().toarray())
122
123
124
125
126
127
128
129
130
131
132

    def _test(g):
        # test twice to see whether the cached format works or not
        _test_one(g)
        _test_one(g)

    def _test_csr_one(g):
        assert g.number_of_nodes() == 10
        assert g.number_of_edges() == 20

        for i in range(10):
133
134
            assert g.has_nodes(i)
        assert not g.has_nodes(11)
135
        assert F.allclose(g.has_nodes([0,2,10,11]), F.tensor([1,1,0,0]))
136
137
138

        src, dst = edge_pair_input(sort=True)
        for u, v in zip(src, dst):
139
140
            assert g.has_edges_between(u, v)
        assert not g.has_edges_between(0, 0)
141
142
143
144
145
146
147
        assert F.allclose(g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0,1,1]))
        assert set(F.asnumpy(g.predecessors(9))) == set([0,5,7,4])
        assert set(F.asnumpy(g.successors(2))) == set([7,3])

        # src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
        # dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
        # eid = [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9]
148
        assert g.edge_ids(4,4) == 11
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        assert F.allclose(g.edge_ids([4,0], [4,9]), F.tensor([11,2]))

        src, dst = g.find_edges([3, 6, 5])
        assert F.allclose(src, F.tensor([1, 2, 2]))
        assert F.allclose(dst, F.tensor([3, 7, 3]))

        src, dst, eid = g.in_edges(9, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(5,9,14),(7,9,18),(4,9,12)])
        src, dst, eid = g.in_edges([9,0,8], form='all')  # test node#0 has no in edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(5,9,14),(7,9,18),(4,9,12),(3,8,8),(7,8,17)])

        src, dst, eid = g.out_edges(0, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(0,6,1),(0,4,0)])
        src, dst, eid = g.out_edges([0,4,8], form='all')  # test node#8 has no out edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(0,6,1),(0,4,0),(4,3,10),(4,4,11),(4,9,12),(4,1,9)])

        src, dst, eid = g.edges('all', 'eid')
        t_src, t_dst = edge_pair_input(sort=True)
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(eid)) == list(range(20))

        src, dst, eid = g.edges('all', 'srcdst')
        t_src, t_dst = edge_pair_input(sort=True)
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))

183
184
        assert g.in_degrees(0) == 0
        assert g.in_degrees(9) == 4
185
        assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
186
187
        assert g.out_degrees(8) == 0
        assert g.out_degrees(9) == 1
188
189
        assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))

Mufei Li's avatar
Mufei Li committed
190
        assert np.array_equal(
191
                F.sparse_to_numpy(g.adjacency_matrix(transpose=True)), scipy_coo_input().toarray().T)
Mufei Li's avatar
Mufei Li committed
192
        assert np.array_equal(
193
                F.sparse_to_numpy(g.adjacency_matrix(transpose=False)), scipy_coo_input().toarray())
194
195
196
197
198
199

    def _test_csr(g):
        # test twice to see whether the cached format works or not
        _test_csr_one(g)
        _test_csr_one(g)

200
201
202
203
    def _test_edge_ids():
        g = gen_by_mutation()
        eids = g.edge_ids([4,0], [4,9])
        assert eids.shape[0] == 2
204
        eid = g.edge_ids(4, 4)
205
206
        assert isinstance(eid, numbers.Number)
        with pytest.raises(DGLError):
207
208
            eids = g.edge_ids([9,0], [4,9])

209
        with pytest.raises(DGLError):
210
            eid = g.edge_ids(4, 5)
211

212
        g.add_edges(0, 4)
213
        eids = g.edge_ids([0,0], [4,9])
214
        eid = g.edge_ids(0, 4)
215

216
    _test(gen_by_mutation())
Da Zheng's avatar
Da Zheng committed
217
218
219
220
221
222
223
224
    _test(gen_from_data(elist_input(), False, False))
    _test(gen_from_data(elist_input(), True, False))
    _test(gen_from_data(elist_input(), True, True))
    _test(gen_from_data(scipy_coo_input(), False, False))
    _test(gen_from_data(scipy_coo_input(), True, False))

    _test_csr(gen_from_data(scipy_csr_input(), False, False))
    _test_csr(gen_from_data(scipy_csr_input(), True, False))
225
    _test_edge_ids()
226
227

def test_mutation():
228
    g = dgl.DGLGraph()
229
    g = g.to(F.ctx())
230
231
    # test add nodes with data
    g.add_nodes(5)
232
233
234
235
236
    g.add_nodes(5, {'h' : F.ones((5, 2))})
    ans = F.cat([F.zeros((5, 2)), F.ones((5, 2))], 0)
    assert F.allclose(ans, g.ndata['h'])
    g.ndata['w'] = 2 * F.ones((10, 2))
    assert F.allclose(2 * F.ones((10, 2)), g.ndata['w'])
237
238
    # test add edges with data
    g.add_edges([2, 3], [3, 4])
239
240
241
    g.add_edges([0, 1], [1, 2], {'m' : F.ones((2, 2))})
    ans = F.cat([F.zeros((2, 2)), F.ones((2, 2))], 0)
    assert F.allclose(ans, g.edata['m'])
242

243
244
245
246
247
def test_scipy_adjmat():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))

Zihao Ye's avatar
Zihao Ye committed
248
249
    adj_0 = g.adj(scipy_fmt='csr')
    adj_1 = g.adj(scipy_fmt='coo')
250
251
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

252
253
    adj_t0 = g.adj(transpose=False, scipy_fmt='csr')
    adj_t_1 = g.adj(transpose=False, scipy_fmt='coo')
254
255
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

256
257
258
def test_incmat():
    g = dgl.DGLGraph()
    g.add_nodes(4)
259
260
261
262
263
    g.add_edges(0, 1) # 0
    g.add_edges(0, 2) # 1
    g.add_edges(0, 3) # 2
    g.add_edges(2, 3) # 3
    g.add_edges(1, 1) # 4
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    inc_in = F.sparse_to_numpy(g.incidence_matrix('in'))
    inc_out = F.sparse_to_numpy(g.incidence_matrix('out'))
    inc_both = F.sparse_to_numpy(g.incidence_matrix('both'))
    print(inc_in)
    print(inc_out)
    print(inc_both)
    assert np.allclose(
            inc_in,
            np.array([[0., 0., 0., 0., 0.],
                      [1., 0., 0., 0., 1.],
                      [0., 1., 0., 0., 0.],
                      [0., 0., 1., 1., 0.]]))
    assert np.allclose(
            inc_out,
            np.array([[1., 1., 1., 0., 0.],
                      [0., 0., 0., 0., 1.],
                      [0., 0., 0., 1., 0.],
                      [0., 0., 0., 0., 0.]]))
    assert np.allclose(
            inc_both,
            np.array([[-1., -1., -1., 0., 0.],
                      [1., 0., 0., 0., 0.],
                      [0., 1., 0., -1., 0.],
                      [0., 0., 1., 1., 0.]]))
288

289
290
291
292
293
def test_find_edges():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))
    e = g.find_edges([1, 3, 2, 4])
294
295
    assert F.asnumpy(e[0][0]) == 1 and F.asnumpy(e[0][1]) == 3 and F.asnumpy(e[0][2]) == 2 and F.asnumpy(e[0][3]) == 4
    assert F.asnumpy(e[1][0]) == 2 and F.asnumpy(e[1][1]) == 4 and F.asnumpy(e[1][2]) == 3 and F.asnumpy(e[1][3]) == 5
296
297
298
299
300
301
302
303
304

    try:
        g.find_edges([10])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

305
306
307
308
309
310
311
312
313
314
315
def test_ismultigraph():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    assert g.is_multigraph == False
    g.add_edges([0], [0])
    assert g.is_multigraph == False
    g.add_edges([1], [2])
    assert g.is_multigraph == False
    g.add_edges([0, 2], [0, 3])
    assert g.is_multigraph == True

316
317
318
319
320
321
def test_hypersparse_query():
    g = dgl.DGLGraph()
    g = g.to(F.ctx())
    g.add_nodes(1000001)
    g.add_edges([0], [1])
    for i in range(10):
322
323
324
        assert g.has_nodes(i)
    assert not g.has_nodes(1000002)
    assert g.edge_ids(0, 1) == 0
325
326
327
328
    src, dst = g.find_edges([0])
    src, dst, eid = g.in_edges(1, form='all')
    src, dst, eid = g.out_edges(0, form='all')
    src, dst = g.edges()
329
330
331
332
    assert g.in_degrees(0) == 0
    assert g.in_degrees(1) == 1
    assert g.out_degrees(0) == 1
    assert g.out_degrees(1) == 0
333

334
335
336
337
338
339
340
341
def test_empty_data_initialized():
    g = dgl.DGLGraph()
    g = g.to(F.ctx())
    g.ndata["ha"] = F.tensor([])
    g.add_nodes(1, {"hb": F.tensor([1])})
    assert "ha" in g.ndata
    assert len(g.ndata["ha"]) == 1

342
def test_is_sorted():
343
344
   u_src, u_dst = edge_pair_input(False)
   s_src, s_dst = edge_pair_input(True)
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

   u_src = F.tensor(u_src, dtype=F.int32)
   u_dst = F.tensor(u_dst, dtype=F.int32)
   s_src = F.tensor(s_src, dtype=F.int32)
   s_dst = F.tensor(s_dst, dtype=F.int32)

   src_sorted, dst_sorted = dgl.utils.is_sorted_srcdst(u_src, u_dst)
   assert src_sorted == False
   assert dst_sorted == False

   src_sorted, dst_sorted = dgl.utils.is_sorted_srcdst(s_src, s_dst)
   assert src_sorted == True
   assert dst_sorted == True

   src_sorted, dst_sorted = dgl.utils.is_sorted_srcdst(u_src, u_dst)
   assert src_sorted == False
   assert dst_sorted == False

   src_sorted, dst_sorted = dgl.utils.is_sorted_srcdst(s_src, u_dst)
   assert src_sorted == True
   assert dst_sorted == False

367
368
369
370
371
372
373

def test_default_types():
    dg = dgl.DGLGraph()
    g = dgl.graph(([], []))
    assert dg.ntypes == g.ntypes
    assert dg.etypes == g.etypes

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

def test_formats():
    g = dgl.rand_graph(10, 20)
    # in_degrees works if coo or csc available
    # out_degrees works if coo or csr available
    try:
        g.in_degrees()
        g.out_degrees()
        g.formats('coo').in_degrees()
        g.formats('coo').out_degrees()
        g.formats('csc').in_degrees()
        g.formats('csr').out_degrees()
        fail = False
    except DGLError:
        fail = True
    finally:
        assert not fail
    # in_degrees NOT works if csc available only
    try:
        g.formats('csc').out_degrees()
        fail = True
    except DGLError:
        fail = False
    finally:
        assert not fail
    # out_degrees NOT works if csr available only
    try:
        g.formats('csr').in_degrees()
        fail = True
    except DGLError:
        fail = False
    finally:
        assert not fail
407

408
if __name__ == '__main__':
409
410
    test_query()
    test_mutation()
411
    test_scipy_adjmat()
412
    test_incmat()
413
    test_find_edges()
414
    test_hypersparse_query()
415
    test_is_sorted()
416
    test_default_types()
417
    test_formats()