test_data.py 72.8 KB
Newer Older
1
import gzip
2
import io
3
import os
4
import tarfile
5
import tempfile
6
import unittest
7

8
import backend as F
9
10
11

import dgl
import dgl.data as data
12
import numpy as np
13
14
import pandas as pd
import pytest
15
import yaml
16
from dgl import DGLError
17

18
19
20
21
22

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
23
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
24
25
26
27
def test_minigc():
    ds = data.MiniGCDataset(16, 10, 20)
    g, l = list(zip(*ds))
    print(g, l)
28
29
30
31
32
    g1 = ds[0][0]
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.MiniGCDataset(16, 10, 20, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
33

34
35
36
37
38

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
39
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
40
41
def test_gin():
    ds_n_graphs = {
42
43
44
45
46
        "MUTAG": 188,
        "IMDBBINARY": 1000,
        "IMDBMULTI": 1500,
        "PROTEINS": 1113,
        "PTC": 344,
47
    }
48
    transform = dgl.AddSelfLoop(allow_duplicate=True)
49
50
51
    for name, n_graphs in ds_n_graphs.items():
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False)
        assert len(ds) == n_graphs, (len(ds), name)
52
        g1 = ds[0][0]
53
54
55
        ds = data.GINDataset(
            name, self_loop=False, degree_as_nlabel=False, transform=transform
        )
56
57
        g2 = ds[0][0]
        assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
Mufei Li's avatar
Mufei Li committed
58
        assert ds.num_classes == ds.gclasses
59

60
61
62
63
64

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
65
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
66
def test_fraud():
67
68
    transform = dgl.AddSelfLoop(allow_duplicate=True)

69
    g = data.FraudDataset("amazon")[0]
70
    assert g.num_nodes() == 11944
71
    num_edges1 = g.num_edges()
72
    g2 = data.FraudDataset("amazon", transform=transform)[0]
73
74
    # 3 edge types
    assert g2.num_edges() - num_edges1 == g.num_nodes() * 3
75
76
77

    g = data.FraudAmazonDataset()[0]
    assert g.num_nodes() == 11944
78
79
80
    g2 = data.FraudAmazonDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
81
82
83

    g = data.FraudYelpDataset()[0]
    assert g.num_nodes() == 45954
84
85
86
    g2 = data.FraudYelpDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
87

88
89
90
91
92

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
93
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
94
def test_fakenews():
95
96
    transform = dgl.AddSelfLoop(allow_duplicate=True)

97
    ds = data.FakeNewsDataset("politifact", "bert")
98
    assert len(ds) == 314
99
    g = ds[0][0]
100
    g2 = data.FakeNewsDataset("politifact", "bert", transform=transform)[0][0]
101
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
102

103
    ds = data.FakeNewsDataset("gossipcop", "profile")
104
    assert len(ds) == 5464
105
    g = ds[0][0]
106
    g2 = data.FakeNewsDataset("gossipcop", "profile", transform=transform)[0][0]
107
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
Jinjing Zhou's avatar
Jinjing Zhou committed
108

109
110
111
112
113

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
114
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
115
def test_tudataset_regression():
116
    ds = data.TUDataset("ZINC_test", force_reload=True)
Mufei Li's avatar
Mufei Li committed
117
    assert ds.num_classes == ds.num_labels
Jinjing Zhou's avatar
Jinjing Zhou committed
118
    assert len(ds) == 5000
119
    g = ds[0][0]
Jinjing Zhou's avatar
Jinjing Zhou committed
120

121
    transform = dgl.AddSelfLoop(allow_duplicate=True)
122
    ds = data.TUDataset("ZINC_test", force_reload=True, transform=transform)
123
124
    g2 = ds[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
125

126
127
128
129
130

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
131
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
132
133
134
def test_data_hash():
    class HashTestDataset(data.DGLDataset):
        def __init__(self, hash_key=()):
135
            super(HashTestDataset, self).__init__("hashtest", hash_key=hash_key)
136

137
138
139
        def _load(self):
            pass

140
141
142
    a = HashTestDataset((True, 0, "1", (1, 2, 3)))
    b = HashTestDataset((True, 0, "1", (1, 2, 3)))
    c = HashTestDataset((True, 0, "1", (1, 2, 4)))
143
144
145
    assert a.hash == b.hash
    assert a.hash != c.hash

146

147
148
149
150
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
151
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
152
def test_citation_graph():
153
154
    transform = dgl.AddSelfLoop(allow_duplicate=True)

155
    # cora
156
    g = data.CoraGraphDataset(force_reload=True, reorder=True)[0]
157
158
159
160
    assert g.num_nodes() == 2708
    assert g.num_edges() == 10556
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
161
162
    g2 = data.CoraGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
163
164

    # Citeseer
165
    g = data.CiteseerGraphDataset(force_reload=True, reorder=True)[0]
166
167
168
169
    assert g.num_nodes() == 3327
    assert g.num_edges() == 9228
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
170
171
    g2 = data.CiteseerGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
172
173

    # Pubmed
174
    g = data.PubmedGraphDataset(force_reload=True, reorder=True)[0]
175
176
177
178
    assert g.num_nodes() == 19717
    assert g.num_edges() == 88651
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
179
180
    g2 = data.PubmedGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
181
182


183
184
185
186
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
187
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
188
def test_gnn_benchmark():
189
190
    transform = dgl.AddSelfLoop(allow_duplicate=True)

191
192
193
194
195
196
    # AmazonCoBuyComputerDataset
    g = data.AmazonCoBuyComputerDataset()[0]
    assert g.num_nodes() == 13752
    assert g.num_edges() == 491722
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
197
198
    g2 = data.AmazonCoBuyComputerDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
199
200
201
202
203
204
205

    # AmazonCoBuyPhotoDataset
    g = data.AmazonCoBuyPhotoDataset()[0]
    assert g.num_nodes() == 7650
    assert g.num_edges() == 238163
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
206
207
    g2 = data.AmazonCoBuyPhotoDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
208
209
210
211
212
213
214

    # CoauthorPhysicsDataset
    g = data.CoauthorPhysicsDataset()[0]
    assert g.num_nodes() == 34493
    assert g.num_edges() == 495924
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
215
216
    g2 = data.CoauthorPhysicsDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
217
218
219
220
221
222
223

    # CoauthorCSDataset
    g = data.CoauthorCSDataset()[0]
    assert g.num_nodes() == 18333
    assert g.num_edges() == 163788
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
224
225
    g2 = data.CoauthorCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
226
227
228
229
230
231
232

    # CoraFullDataset
    g = data.CoraFullDataset()[0]
    assert g.num_nodes() == 19793
    assert g.num_edges() == 126842
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
233
234
    g2 = data.CoraFullDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
235
236


237
238
239
240
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
241
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
242
243
244
245
246
247
248
249
def test_reddit():
    # RedditDataset
    g = data.RedditDataset()[0]
    assert g.num_nodes() == 232965
    assert g.num_edges() == 114615892
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

250
251
252
253
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.RedditDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

254
255
256
257
258

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
259
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
260
261
262
263
def test_explain_syn():
    dataset = data.BAShapeDataset()
    assert dataset.num_classes == 4
    g = dataset[0]
264
265
    assert "label" in g.ndata
    assert "feat" in g.ndata
266
267
268
269
270
271
272
273
274
275
276

    g1 = data.BAShapeDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.BAShapeDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.BACommunityDataset()
    assert dataset.num_classes == 8
    g = dataset[0]
277
278
    assert "label" in g.ndata
    assert "feat" in g.ndata
279
280
281
282
283
284
285
286
287
288
289

    g1 = data.BACommunityDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.BACommunityDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.TreeCycleDataset()
    assert dataset.num_classes == 2
    g = dataset[0]
290
291
    assert "label" in g.ndata
    assert "feat" in g.ndata
292
293
294
295
296
297
298
299
300
301
302

    g1 = data.TreeCycleDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.TreeCycleDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.TreeGridDataset()
    assert dataset.num_classes == 2
    g = dataset[0]
303
304
    assert "label" in g.ndata
    assert "feat" in g.ndata
305
306
307
308
309
310
311
312
313
314
315

    g1 = data.TreeGridDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.TreeGridDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.BA2MotifDataset()
    assert dataset.num_classes == 2
    g, label = dataset[0]
316
    assert "feat" in g.ndata
317

318
319
320
321
322

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
323
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
324
325
326
327
328
329
330
331
332
333
334
def test_wiki_cs():
    g = data.WikiCSDataset()[0]
    assert g.num_nodes() == 11701
    assert g.num_edges() == 431726
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.WikiCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

335

336
@unittest.skip(reason="Dataset too large to download for the latest CI.")
Minjie Wang's avatar
Minjie Wang committed
337
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
338
339
340
341
342
343
344
345
346
347
348
def test_yelp():
    g = data.YelpDataset(reorder=True)[0]
    assert g.num_nodes() == 716847
    assert g.num_edges() == 13954819
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.YelpDataset(reorder=True, transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

349
350
351
352
353

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
354
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
355
356
357
358
359
360
361
362
363
364
def test_flickr():
    g = data.FlickrDataset(reorder=True)[0]
    assert g.num_nodes() == 89250
    assert g.num_edges() == 899756
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.FlickrDataset(reorder=True, transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
365

366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_pattern():
    mode_n_graphs = {
        "train": 10000,
        "valid": 2000,
        "test": 2000,
    }
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    for mode, n_graphs in mode_n_graphs.items():
        ds = data.PATTERNDataset(mode=mode)
        assert len(ds) == n_graphs, (len(ds), mode)
        g1 = ds[0]
        ds = data.PATTERNDataset(mode=mode, transform=transform)
        g2 = ds[0]
        assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
        assert ds.num_classes == 2


389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
def test_cluster():
    mode_n_graphs = {
        "train": 10000,
        "valid": 1000,
        "test": 1000,
    }
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    for mode, n_graphs in mode_n_graphs.items():
        ds = data.CLUSTERDataset(mode=mode)
        assert len(ds) == n_graphs, (len(ds), mode)
        g1 = ds[0]
        ds = data.CLUSTERDataset(mode=mode, transform=transform)
        g2 = ds[0]
        assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
        assert ds.num_classes == 6


411
def _test_construct_graphs_node_ids():
412
413
414
415
416
417
    from dgl.data.csv_dataset_base import (
        DGLGraphConstructor,
        EdgeData,
        NodeData,
    )

418
419
420
421
422
423
424
425
426
427
428
    num_nodes = 100
    num_edges = 1000

    # node IDs are required to be unique
    node_ids = np.random.choice(np.arange(num_nodes / 2), num_nodes)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    expect_except = False
    try:
429
        _, _ = DGLGraphConstructor.construct_graphs(node_data, edge_data)
430
431
432
433
434
435
436
437
438
439
440
    except:
        expect_except = True
    assert expect_except

    # node IDs are already labelled from 0~num_nodes-1
    node_ids = np.arange(num_nodes)
    np.random.shuffle(node_ids)
    _, idx = np.unique(node_ids, return_index=True)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_feat = np.random.rand(num_nodes, 3)
441
    node_data = NodeData(node_ids, {"feat": node_feat})
442
443
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
444
445
        node_data, edge_data
    )
446
447
448
449
450
451
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)
452
453
454
    assert F.array_equal(
        F.tensor(node_feat[idx], dtype=F.float32), g.ndata["feat"]
    )
455
456
457

    # node IDs are mixed with numeric and non-numeric values
    # homogeneous graph
458
    node_ids = [1, 2, 3, "a"]
459
    src_ids = [1, 2, 3]
460
    dst_ids = ["a", 1, 2]
461
462
463
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
464
465
        node_data, edge_data
    )
466
467
468
469
470
471
472
473
474
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)

    # heterogeneous graph
    node_ids_user = [1, 2, 3]
475
    node_ids_item = ["a", "b", "c"]
476
477
    src_ids = node_ids_user
    dst_ids = node_ids_item
478
479
480
    node_data_user = NodeData(node_ids_user, {}, type="user")
    node_data_item = NodeData(node_ids_item, {}, type="item")
    edge_data = EdgeData(src_ids, dst_ids, {}, type=("user", "like", "item"))
481
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
482
483
        [node_data_user, node_data_item], edge_data
    )
484
485
486
487
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
488
489
    assert g.num_nodes("user") == len(node_ids_user)
    assert g.num_nodes("item") == len(node_ids_item)
490
491
492
    assert g.num_edges() == len(src_ids)


493
def _test_construct_graphs_homo():
494
495
496
497
498
499
    from dgl.data.csv_dataset_base import (
        DGLGraphConstructor,
        EdgeData,
        NodeData,
    )

500
    # node_id could be non-sorted, non-numeric.
501
502
503
504
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    node_ids = np.random.choice(
505
506
        np.arange(num_nodes * 2), size=num_nodes, replace=False
    )
507
    assert len(node_ids) == num_nodes
508
    # to be non-sorted
509
    np.random.shuffle(node_ids)
510
    # to be non-numeric
511
512
513
514
515
    node_ids = ["id_{}".format(id) for id in node_ids]
    t_ndata = {
        "feat": np.random.rand(num_nodes, num_dims),
        "label": np.random.randint(2, size=num_nodes),
    }
516
    _, u_indices = np.unique(node_ids, return_index=True)
517
518
519
520
    ndata = {
        "feat": t_ndata["feat"][u_indices],
        "label": t_ndata["label"][u_indices],
    }
521
    node_data = NodeData(node_ids, t_ndata)
522
523
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
524
525
526
527
    edata = {
        "feat": np.random.rand(num_edges, num_dims),
        "label": np.random.randint(2, size=num_edges),
    }
528
529
    edge_data = EdgeData(src_ids, dst_ids, edata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
530
531
        node_data, edge_data
    )
532
533
534
535
536
537
538
539
540
541
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == num_nodes
    assert g.num_edges() == num_edges

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
542
543
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
544
545
546
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key]
            )

547
548
549
550
551
    assert_data(ndata, g.ndata)
    assert_data(edata, g.edata)


def _test_construct_graphs_hetero():
552
553
554
555
556
557
    from dgl.data.csv_dataset_base import (
        DGLGraphConstructor,
        EdgeData,
        NodeData,
    )

558
    # node_id/src_id/dst_id could be non-sorted, duplicated, non-numeric.
559
560
561
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
562
    ntypes = ["user", "item"]
563
564
565
566
567
    node_data = []
    node_ids_dict = {}
    ndata_dict = {}
    for ntype in ntypes:
        node_ids = np.random.choice(
568
569
            np.arange(num_nodes * 2), size=num_nodes, replace=False
        )
570
        assert len(node_ids) == num_nodes
571
        # to be non-sorted
572
        np.random.shuffle(node_ids)
573
        # to be non-numeric
574
575
576
577
578
        node_ids = ["id_{}".format(id) for id in node_ids]
        t_ndata = {
            "feat": np.random.rand(num_nodes, num_dims),
            "label": np.random.randint(2, size=num_nodes),
        }
579
        _, u_indices = np.unique(node_ids, return_index=True)
580
581
582
583
        ndata = {
            "feat": t_ndata["feat"][u_indices],
            "label": t_ndata["label"][u_indices],
        }
584
        node_data.append(NodeData(node_ids, t_ndata, type=ntype))
585
586
        node_ids_dict[ntype] = node_ids
        ndata_dict[ntype] = ndata
587
    etypes = [("user", "follow", "user"), ("user", "like", "item")]
588
589
590
591
592
    edge_data = []
    edata_dict = {}
    for src_type, e_type, dst_type in etypes:
        src_ids = np.random.choice(node_ids_dict[src_type], size=num_edges)
        dst_ids = np.random.choice(node_ids_dict[dst_type], size=num_edges)
593
594
595
596
597
598
599
        edata = {
            "feat": np.random.rand(num_edges, num_dims),
            "label": np.random.randint(2, size=num_edges),
        }
        edge_data.append(
            EdgeData(src_ids, dst_ids, edata, type=(src_type, e_type, dst_type))
        )
600
        edata_dict[(src_type, e_type, dst_type)] = edata
601
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
602
603
        node_data, edge_data
    )
604
605
606
607
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
608
609
    assert g.num_nodes() == num_nodes * len(ntypes)
    assert g.num_edges() == num_edges * len(etypes)
610
611
612
613

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
614
615
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
616
617
618
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key]
            )

619
620
621
622
623
624
625
626
627
    for ntype in g.ntypes:
        assert g.num_nodes(ntype) == num_nodes
        assert_data(ndata_dict[ntype], g.nodes[ntype].data)
    for etype in g.canonical_etypes:
        assert g.num_edges(etype) == num_edges
        assert_data(edata_dict[etype], g.edges[etype].data)


def _test_construct_graphs_multiple():
628
629
630
631
632
633
634
    from dgl.data.csv_dataset_base import (
        DGLGraphConstructor,
        EdgeData,
        GraphData,
        NodeData,
    )

635
636
637
638
639
640
641
642
643
644
645
646
    num_nodes = 100
    num_edges = 1000
    num_graphs = 10
    num_dims = 3
    node_ids = np.array([], dtype=np.int)
    src_ids = np.array([], dtype=np.int)
    dst_ids = np.array([], dtype=np.int)
    ngraph_ids = np.array([], dtype=np.int)
    egraph_ids = np.array([], dtype=np.int)
    u_indices = np.array([], dtype=np.int)
    for i in range(num_graphs):
        l_node_ids = np.random.choice(
647
648
            np.arange(num_nodes * 2), size=num_nodes, replace=False
        )
649
650
651
652
        node_ids = np.append(node_ids, l_node_ids)
        _, l_u_indices = np.unique(l_node_ids, return_index=True)
        u_indices = np.append(u_indices, l_u_indices)
        ngraph_ids = np.append(ngraph_ids, np.full(num_nodes, i))
653
654
655
656
657
658
        src_ids = np.append(
            src_ids, np.random.choice(l_node_ids, size=num_edges)
        )
        dst_ids = np.append(
            dst_ids, np.random.choice(l_node_ids, size=num_edges)
        )
659
        egraph_ids = np.append(egraph_ids, np.full(num_edges, i))
660
661
662
663
664
    ndata = {
        "feat": np.random.rand(num_nodes * num_graphs, num_dims),
        "label": np.random.randint(2, size=num_nodes * num_graphs),
    }
    ngraph_ids = ["graph_{}".format(id) for id in ngraph_ids]
665
    node_data = NodeData(node_ids, ndata, graph_id=ngraph_ids)
666
667
668
669
670
    egraph_ids = ["graph_{}".format(id) for id in egraph_ids]
    edata = {
        "feat": np.random.rand(num_edges * num_graphs, num_dims),
        "label": np.random.randint(2, size=num_edges * num_graphs),
    }
671
    edge_data = EdgeData(src_ids, dst_ids, edata, graph_id=egraph_ids)
672
673
674
675
676
    gdata = {
        "feat": np.random.rand(num_graphs, num_dims),
        "label": np.random.randint(2, size=num_graphs),
    }
    graph_ids = ["graph_{}".format(id) for id in np.arange(num_graphs)]
677
    graph_data = GraphData(graph_ids, gdata)
678
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
679
680
        node_data, edge_data, graph_data
    )
681
682
683
    assert len(graphs) == num_graphs
    assert len(data_dict) == len(gdata)
    for k, v in data_dict.items():
684
        assert F.dtype(v) != F.float64
685
686
687
688
        assert F.array_equal(
            F.reshape(F.tensor(gdata[k], dtype=F.dtype(v)), (len(graphs), -1)),
            v,
        )
689
690
691
692
693
694
695
696
    for i, g in enumerate(graphs):
        assert g.is_homogeneous
        assert g.num_nodes() == num_nodes
        assert g.num_edges() == num_edges

        def assert_data(lhs, rhs, size, node=False):
            for key, value in lhs.items():
                assert key in rhs
697
                value = value[i * size : (i + 1) * size]
698
                if node:
699
                    indices = u_indices[i * size : (i + 1) * size]
700
                    value = value[indices]
701
702
                assert F.dtype(rhs[key]) != F.float64
                assert F.array_equal(
703
704
705
                    F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key]
                )

706
707
708
709
        assert_data(ndata, g.ndata, num_nodes, node=True)
        assert_data(edata, g.edata, num_edges)

    # Graph IDs found in node/edge CSV but not in graph CSV
710
    graph_data = GraphData(np.arange(num_graphs - 2), {})
711
712
    expect_except = False
    try:
713
        _, _ = DGLGraphConstructor.construct_graphs(
714
715
            node_data, edge_data, graph_data
        )
716
717
718
719
720
721
    except:
        expect_except = True
    assert expect_except


def _test_DefaultDataParser():
722
    from dgl.data.csv_dataset_base import DefaultDataParser
723

724
725
726
727
728
729
730
731
732
    # common csv
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        num_nodes = 5
        num_labels = 3
        num_dims = 2
        node_id = np.arange(num_nodes)
        label = np.random.randint(num_labels, size=num_nodes)
        feat = np.random.rand(num_nodes, num_dims)
733
734
735
736
737
738
739
        df = pd.DataFrame(
            {
                "node_id": node_id,
                "label": label,
                "feat": [line.tolist() for line in feat],
            }
        )
740
        df.to_csv(csv_path, index=False)
741
        dp = DefaultDataParser()
742
743
        df = pd.read_csv(csv_path)
        dt = dp(df)
744
745
746
        assert np.array_equal(node_id, dt["node_id"])
        assert np.array_equal(label, dt["label"])
        assert np.array_equal(feat, dt["feat"])
747
748
749
    # string consists of non-numeric values
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
750
        df = pd.DataFrame({"label": ["a", "b", "c"]})
751
        df.to_csv(csv_path, index=False)
752
        dp = DefaultDataParser()
753
754
755
756
757
758
759
760
761
762
        df = pd.read_csv(csv_path)
        expect_except = False
        try:
            dt = dp(df)
        except:
            expect_except = True
        assert expect_except
    # csv has index column which is ignored as it's unnamed
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
763
        df = pd.DataFrame({"label": [1, 2, 3]})
764
        df.to_csv(csv_path)
765
        dp = DefaultDataParser()
766
767
768
769
770
771
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert len(dt) == 1


def _test_load_yaml_with_sanity_check():
772
    from dgl.data.csv_dataset_base import load_yaml_with_sanity_check
773

774
    with tempfile.TemporaryDirectory() as test_dir:
775
        yaml_path = os.path.join(test_dir, "meta.yaml")
776
        # workable but meaningless usually
777
778
779
780
781
782
        yaml_data = {
            "dataset_name": "default",
            "node_data": [],
            "edge_data": [],
        }
        with open(yaml_path, "w") as f:
783
            yaml.dump(yaml_data, f, sort_keys=False)
784
        meta = load_yaml_with_sanity_check(yaml_path)
785
786
787
        assert meta.version == "1.0.0"
        assert meta.dataset_name == "default"
        assert meta.separator == ","
788
789
790
791
        assert len(meta.node_data) == 0
        assert len(meta.edge_data) == 0
        assert meta.graph_data is None
        # minimum with required fields only
792
793
794
795
796
797
798
        yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default",
            "node_data": [{"file_name": "nodes.csv"}],
            "edge_data": [{"file_name": "edges.csv"}],
        }
        with open(yaml_path, "w") as f:
799
            yaml.dump(yaml_data, f, sort_keys=False)
800
        meta = load_yaml_with_sanity_check(yaml_path)
801
        for ndata in meta.node_data:
802
803
804
805
            assert ndata.file_name == "nodes.csv"
            assert ndata.ntype == "_V"
            assert ndata.graph_id_field == "graph_id"
            assert ndata.node_id_field == "node_id"
806
        for edata in meta.edge_data:
807
808
809
810
811
            assert edata.file_name == "edges.csv"
            assert edata.etype == ["_V", "_E", "_V"]
            assert edata.graph_id_field == "graph_id"
            assert edata.src_id_field == "src_id"
            assert edata.dst_id_field == "dst_id"
812
        # optional fields are specified
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
        yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default",
            "separator": "|",
            "node_data": [
                {
                    "file_name": "nodes.csv",
                    "ntype": "user",
                    "graph_id_field": "xxx",
                    "node_id_field": "xxx",
                }
            ],
            "edge_data": [
                {
                    "file_name": "edges.csv",
                    "etype": ["user", "follow", "user"],
                    "graph_id_field": "xxx",
                    "src_id_field": "xxx",
                    "dst_id_field": "xxx",
                }
            ],
            "graph_data": {"file_name": "graph.csv", "graph_id_field": "xxx"},
        }
        with open(yaml_path, "w") as f:
837
            yaml.dump(yaml_data, f, sort_keys=False)
838
        meta = load_yaml_with_sanity_check(yaml_path)
839
840
        assert len(meta.node_data) == 1
        ndata = meta.node_data[0]
841
842
843
        assert ndata.ntype == "user"
        assert ndata.graph_id_field == "xxx"
        assert ndata.node_id_field == "xxx"
844
845
        assert len(meta.edge_data) == 1
        edata = meta.edge_data[0]
846
847
848
849
        assert edata.etype == ["user", "follow", "user"]
        assert edata.graph_id_field == "xxx"
        assert edata.src_id_field == "xxx"
        assert edata.dst_id_field == "xxx"
850
        assert meta.graph_data is not None
851
852
        assert meta.graph_data.file_name == "graph.csv"
        assert meta.graph_data.graph_id_field == "xxx"
853
        # some required fields are missing
854
855
856
857
858
        yaml_data = {
            "dataset_name": "default",
            "node_data": [],
            "edge_data": [],
        }
859
860
861
        for field in yaml_data.keys():
            ydata = {k: v for k, v in yaml_data.items()}
            ydata.pop(field)
862
            with open(yaml_path, "w") as f:
863
864
865
                yaml.dump(ydata, f, sort_keys=False)
            expect_except = False
            try:
866
                meta = load_yaml_with_sanity_check(yaml_path)
867
868
869
870
            except:
                expect_except = True
            assert expect_except
        # inapplicable version
871
872
873
874
875
876
877
        yaml_data = {
            "version": "0.0.0",
            "dataset_name": "default",
            "node_data": [{"file_name": "nodes_0.csv"}],
            "edge_data": [{"file_name": "edges_0.csv"}],
        }
        with open(yaml_path, "w") as f:
878
879
880
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
881
            meta = load_yaml_with_sanity_check(yaml_path)
882
883
884
885
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate node types
886
887
888
889
890
891
892
893
894
895
        yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default",
            "node_data": [
                {"file_name": "nodes.csv"},
                {"file_name": "nodes.csv"},
            ],
            "edge_data": [{"file_name": "edges.csv"}],
        }
        with open(yaml_path, "w") as f:
896
897
898
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
899
            meta = load_yaml_with_sanity_check(yaml_path)
900
901
902
903
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate edge types
904
905
906
907
908
909
910
911
912
913
        yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default",
            "node_data": [{"file_name": "nodes.csv"}],
            "edge_data": [
                {"file_name": "edges.csv"},
                {"file_name": "edges.csv"},
            ],
        }
        with open(yaml_path, "w") as f:
914
915
916
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
917
            meta = load_yaml_with_sanity_check(yaml_path)
918
919
920
921
922
923
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_node_data_from_csv():
924
925
    from dgl.data.csv_dataset_base import DefaultDataParser, MetaNode, NodeData

926
927
928
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        # minimum
929
930
        df = pd.DataFrame({"node_id": np.arange(num_nodes)})
        csv_path = os.path.join(test_dir, "nodes.csv")
931
        df.to_csv(csv_path, index=False)
932
        meta_node = MetaNode(file_name=csv_path)
933
934
        node_data = NodeData.load_from_csv(meta_node, DefaultDataParser())
        assert np.array_equal(df["node_id"], node_data.id)
935
936
937
        assert len(node_data.data) == 0

        # common case
938
939
940
941
942
943
944
        df = pd.DataFrame(
            {
                "node_id": np.arange(num_nodes),
                "label": np.random.randint(3, size=num_nodes),
            }
        )
        csv_path = os.path.join(test_dir, "nodes.csv")
945
        df.to_csv(csv_path, index=False)
946
        meta_node = MetaNode(file_name=csv_path)
947
948
        node_data = NodeData.load_from_csv(meta_node, DefaultDataParser())
        assert np.array_equal(df["node_id"], node_data.id)
949
        assert len(node_data.data) == 1
950
        assert np.array_equal(df["label"], node_data.data["label"])
951
        assert np.array_equal(np.full(num_nodes, 0), node_data.graph_id)
952
        assert node_data.type == "_V"
953
954

        # add more fields into nodes.csv
955
956
957
958
959
960
961
962
        df = pd.DataFrame(
            {
                "node_id": np.arange(num_nodes),
                "label": np.random.randint(3, size=num_nodes),
                "graph_id": np.full(num_nodes, 1),
            }
        )
        csv_path = os.path.join(test_dir, "nodes.csv")
963
        df.to_csv(csv_path, index=False)
964
        meta_node = MetaNode(file_name=csv_path)
965
966
        node_data = NodeData.load_from_csv(meta_node, DefaultDataParser())
        assert np.array_equal(df["node_id"], node_data.id)
967
        assert len(node_data.data) == 1
968
969
970
        assert np.array_equal(df["label"], node_data.data["label"])
        assert np.array_equal(df["graph_id"], node_data.graph_id)
        assert node_data.type == "_V"
971
972

        # required header is missing
973
974
        df = pd.DataFrame({"label": np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, "nodes.csv")
975
        df.to_csv(csv_path, index=False)
976
        meta_node = MetaNode(file_name=csv_path)
977
978
        expect_except = False
        try:
979
            NodeData.load_from_csv(meta_node, DefaultDataParser())
980
981
982
983
984
985
        except:
            expect_except = True
        assert expect_except


def _test_load_edge_data_from_csv():
986
987
    from dgl.data.csv_dataset_base import DefaultDataParser, EdgeData, MetaEdge

988
989
990
991
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        num_edges = 1000
        # minimum
992
993
994
995
996
997
998
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
            }
        )
        csv_path = os.path.join(test_dir, "edges.csv")
999
        df.to_csv(csv_path, index=False)
1000
        meta_edge = MetaEdge(file_name=csv_path)
1001
1002
1003
        edge_data = EdgeData.load_from_csv(meta_edge, DefaultDataParser())
        assert np.array_equal(df["src_id"], edge_data.src)
        assert np.array_equal(df["dst_id"], edge_data.dst)
1004
1005
1006
        assert len(edge_data.data) == 0

        # common case
1007
1008
1009
1010
1011
1012
1013
1014
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
                "label": np.random.randint(3, size=num_edges),
            }
        )
        csv_path = os.path.join(test_dir, "edges.csv")
1015
        df.to_csv(csv_path, index=False)
1016
        meta_edge = MetaEdge(file_name=csv_path)
1017
1018
1019
        edge_data = EdgeData.load_from_csv(meta_edge, DefaultDataParser())
        assert np.array_equal(df["src_id"], edge_data.src)
        assert np.array_equal(df["dst_id"], edge_data.dst)
1020
        assert len(edge_data.data) == 1
1021
        assert np.array_equal(df["label"], edge_data.data["label"])
1022
        assert np.array_equal(np.full(num_edges, 0), edge_data.graph_id)
1023
        assert edge_data.type == ("_V", "_E", "_V")
1024
1025

        # add more fields into edges.csv
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
                "graph_id": np.arange(num_edges),
                "feat": np.random.randint(3, size=num_edges),
                "label": np.random.randint(3, size=num_edges),
            }
        )
        csv_path = os.path.join(test_dir, "edges.csv")
1036
        df.to_csv(csv_path, index=False)
1037
        meta_edge = MetaEdge(file_name=csv_path)
1038
1039
1040
        edge_data = EdgeData.load_from_csv(meta_edge, DefaultDataParser())
        assert np.array_equal(df["src_id"], edge_data.src)
        assert np.array_equal(df["dst_id"], edge_data.dst)
1041
        assert len(edge_data.data) == 2
1042
1043
1044
1045
        assert np.array_equal(df["feat"], edge_data.data["feat"])
        assert np.array_equal(df["label"], edge_data.data["label"])
        assert np.array_equal(df["graph_id"], edge_data.graph_id)
        assert edge_data.type == ("_V", "_E", "_V")
1046
1047

        # required headers are missing
1048
        df = pd.DataFrame(
1049
            {"src_id": np.random.randint(num_nodes, size=num_edges)}
1050
1051
        )
        csv_path = os.path.join(test_dir, "edges.csv")
1052
        df.to_csv(csv_path, index=False)
1053
        meta_edge = MetaEdge(file_name=csv_path)
1054
1055
        expect_except = False
        try:
1056
            EdgeData.load_from_csv(meta_edge, DefaultDataParser())
1057
1058
1059
        except DGLError:
            expect_except = True
        assert expect_except
1060
        df = pd.DataFrame(
1061
            {"dst_id": np.random.randint(num_nodes, size=num_edges)}
1062
1063
        )
        csv_path = os.path.join(test_dir, "edges.csv")
1064
        df.to_csv(csv_path, index=False)
1065
        meta_edge = MetaEdge(file_name=csv_path)
1066
1067
        expect_except = False
        try:
1068
            EdgeData.load_from_csv(meta_edge, DefaultDataParser())
1069
1070
1071
1072
1073
1074
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_graph_data_from_csv():
1075
1076
1077
1078
1079
1080
    from dgl.data.csv_dataset_base import (
        DefaultDataParser,
        GraphData,
        MetaGraph,
    )

1081
1082
1083
    with tempfile.TemporaryDirectory() as test_dir:
        num_graphs = 100
        # minimum
1084
1085
        df = pd.DataFrame({"graph_id": np.arange(num_graphs)})
        csv_path = os.path.join(test_dir, "graph.csv")
1086
        df.to_csv(csv_path, index=False)
1087
        meta_graph = MetaGraph(file_name=csv_path)
1088
1089
        graph_data = GraphData.load_from_csv(meta_graph, DefaultDataParser())
        assert np.array_equal(df["graph_id"], graph_data.graph_id)
1090
1091
1092
        assert len(graph_data.data) == 0

        # common case
1093
1094
1095
1096
1097
1098
1099
        df = pd.DataFrame(
            {
                "graph_id": np.arange(num_graphs),
                "label": np.random.randint(3, size=num_graphs),
            }
        )
        csv_path = os.path.join(test_dir, "graph.csv")
1100
        df.to_csv(csv_path, index=False)
1101
        meta_graph = MetaGraph(file_name=csv_path)
1102
1103
        graph_data = GraphData.load_from_csv(meta_graph, DefaultDataParser())
        assert np.array_equal(df["graph_id"], graph_data.graph_id)
1104
        assert len(graph_data.data) == 1
1105
        assert np.array_equal(df["label"], graph_data.data["label"])
1106
1107

        # add more fields into graph.csv
1108
1109
1110
1111
1112
1113
1114
1115
        df = pd.DataFrame(
            {
                "graph_id": np.arange(num_graphs),
                "feat": np.random.randint(3, size=num_graphs),
                "label": np.random.randint(3, size=num_graphs),
            }
        )
        csv_path = os.path.join(test_dir, "graph.csv")
1116
        df.to_csv(csv_path, index=False)
1117
        meta_graph = MetaGraph(file_name=csv_path)
1118
1119
        graph_data = GraphData.load_from_csv(meta_graph, DefaultDataParser())
        assert np.array_equal(df["graph_id"], graph_data.graph_id)
1120
        assert len(graph_data.data) == 2
1121
1122
        assert np.array_equal(df["feat"], graph_data.data["feat"])
        assert np.array_equal(df["label"], graph_data.data["label"])
1123
1124

        # required header is missing
1125
1126
        df = pd.DataFrame({"label": np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, "graph.csv")
1127
        df.to_csv(csv_path, index=False)
1128
        meta_graph = MetaGraph(file_name=csv_path)
1129
1130
        expect_except = False
        try:
1131
            GraphData.load_from_csv(meta_graph, DefaultDataParser())
1132
1133
1134
1135
1136
        except DGLError:
            expect_except = True
        assert expect_except


1137
def _test_CSVDataset_single():
1138
1139
1140
1141
1142
1143
1144
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        meta_yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default_name",
            "node_data": [
                {
                    "file_name": os.path.basename(nodes_csv_path_0),
                    "ntype": "user",
                },
                {
                    "file_name": os.path.basename(nodes_csv_path_1),
                    "ntype": "item",
                },
            ],
            "edge_data": [
                {
                    "file_name": os.path.basename(edges_csv_path_0),
                    "etype": ["user", "follow", "user"],
                },
                {
                    "file_name": os.path.basename(edges_csv_path_1),
                    "etype": ["user", "like", "item"],
                },
            ],
        }
        with open(meta_yaml_path, "w") as f:
1170
1171
1172
1173
1174
1175
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes)
1176
1177
1178
1179
1180
1181
1182
        df = pd.DataFrame(
            {
                "node_id": np.arange(num_nodes),
                "label": label_ndata,
                "feat": [line.tolist() for line in feat_ndata],
            }
        )
1183
1184
1185
1186
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges, num_dims)
        label_edata = np.random.randint(2, size=num_edges)
1187
1188
1189
1190
1191
1192
1193
1194
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
                "label": label_edata,
                "feat": [line.tolist() for line in feat_edata],
            }
        )
1195
1196
1197
1198
1199
1200
1201
1202
1203
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)

        # load CSVDataset
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
1204
            csv_dataset = data.CSVDataset(test_dir, force_reload=force_reload)
1205
1206
1207
1208
1209
1210
            assert len(csv_dataset) == 1
            g = csv_dataset[0]
            assert not g.is_homogeneous
            assert csv_dataset.has_cache()
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
1211
1212
1213
1214
1215
1216
1217
                assert F.array_equal(
                    F.tensor(feat_ndata, dtype=F.float32),
                    g.nodes[ntype].data["feat"],
                )
                assert np.array_equal(
                    label_ndata, F.asnumpy(g.nodes[ntype].data["label"])
                )
1218
1219
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
1220
1221
1222
1223
1224
1225
1226
                assert F.array_equal(
                    F.tensor(feat_edata, dtype=F.float32),
                    g.edges[etype].data["feat"],
                )
                assert np.array_equal(
                    label_edata, F.asnumpy(g.edges[etype].data["label"])
                )
1227
1228


1229
def _test_CSVDataset_multiple():
1230
1231
1232
1233
1234
1235
1236
1237
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
        meta_yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default_name",
            "node_data": [
                {
                    "file_name": os.path.basename(nodes_csv_path_0),
                    "ntype": "user",
                },
                {
                    "file_name": os.path.basename(nodes_csv_path_1),
                    "ntype": "item",
                },
            ],
            "edge_data": [
                {
                    "file_name": os.path.basename(edges_csv_path_0),
                    "etype": ["user", "follow", "user"],
                },
                {
                    "file_name": os.path.basename(edges_csv_path_1),
                    "etype": ["user", "like", "item"],
                },
            ],
            "graph_data": {"file_name": os.path.basename(graph_csv_path)},
        }
        with open(meta_yaml_path, "w") as f:
1264
1265
1266
1267
1268
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        num_dims = 3
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
        feat_ndata = np.random.rand(num_nodes * num_graphs, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes * num_graphs)
        df = pd.DataFrame(
            {
                "node_id": np.hstack(
                    [np.arange(num_nodes) for _ in range(num_graphs)]
                ),
                "label": label_ndata,
                "feat": [line.tolist() for line in feat_ndata],
                "graph_id": np.hstack(
                    [np.full(num_nodes, i) for i in range(num_graphs)]
                ),
            }
        )
1283
1284
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
        feat_edata = np.random.rand(num_edges * num_graphs, num_dims)
        label_edata = np.random.randint(2, size=num_edges * num_graphs)
        df = pd.DataFrame(
            {
                "src_id": np.hstack(
                    [
                        np.random.randint(num_nodes, size=num_edges)
                        for _ in range(num_graphs)
                    ]
                ),
                "dst_id": np.hstack(
                    [
                        np.random.randint(num_nodes, size=num_edges)
                        for _ in range(num_graphs)
                    ]
                ),
                "label": label_edata,
                "feat": [line.tolist() for line in feat_edata],
                "graph_id": np.hstack(
                    [np.full(num_edges, i) for i in range(num_graphs)]
                ),
            }
        )
1308
1309
1310
1311
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        feat_gdata = np.random.rand(num_graphs, num_dims)
        label_gdata = np.random.randint(2, size=num_graphs)
1312
1313
1314
1315
1316
1317
1318
        df = pd.DataFrame(
            {
                "label": label_gdata,
                "feat": [line.tolist() for line in feat_gdata],
                "graph_id": np.arange(num_graphs),
            }
        )
1319
1320
        df.to_csv(graph_csv_path, index=False)

1321
        # load CSVDataset with default node/edge/gdata_parser
1322
1323
1324
1325
1326
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
1327
            csv_dataset = data.CSVDataset(test_dir, force_reload=force_reload)
1328
1329
1330
            assert len(csv_dataset) == num_graphs
            assert csv_dataset.has_cache()
            assert len(csv_dataset.data) == 2
1331
1332
1333
1334
1335
            assert "feat" in csv_dataset.data
            assert "label" in csv_dataset.data
            assert F.array_equal(
                F.tensor(feat_gdata, dtype=F.float32), csv_dataset.data["feat"]
            )
1336
            for i, (g, g_data) in enumerate(csv_dataset):
1337
                assert not g.is_homogeneous
1338
1339
1340
1341
                assert F.asnumpy(g_data["label"]) == label_gdata[i]
                assert F.array_equal(
                    g_data["feat"], F.tensor(feat_gdata[i], dtype=F.float32)
                )
1342
1343
                for ntype in g.ntypes:
                    assert g.num_nodes(ntype) == num_nodes
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
                    assert F.array_equal(
                        F.tensor(
                            feat_ndata[i * num_nodes : (i + 1) * num_nodes],
                            dtype=F.float32,
                        ),
                        g.nodes[ntype].data["feat"],
                    )
                    assert np.array_equal(
                        label_ndata[i * num_nodes : (i + 1) * num_nodes],
                        F.asnumpy(g.nodes[ntype].data["label"]),
                    )
1355
1356
                for etype in g.etypes:
                    assert g.num_edges(etype) == num_edges
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
                    assert F.array_equal(
                        F.tensor(
                            feat_edata[i * num_edges : (i + 1) * num_edges],
                            dtype=F.float32,
                        ),
                        g.edges[etype].data["feat"],
                    )
                    assert np.array_equal(
                        label_edata[i * num_edges : (i + 1) * num_edges],
                        F.asnumpy(g.edges[etype].data["label"]),
                    )
1368
1369


1370
def _test_CSVDataset_customized_data_parser():
1371
1372
1373
1374
1375
1376
1377
1378
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
        meta_yaml_data = {
            "dataset_name": "default_name",
            "node_data": [
                {
                    "file_name": os.path.basename(nodes_csv_path_0),
                    "ntype": "user",
                },
                {
                    "file_name": os.path.basename(nodes_csv_path_1),
                    "ntype": "item",
                },
            ],
            "edge_data": [
                {
                    "file_name": os.path.basename(edges_csv_path_0),
                    "etype": ["user", "follow", "user"],
                },
                {
                    "file_name": os.path.basename(edges_csv_path_1),
                    "etype": ["user", "like", "item"],
                },
            ],
            "graph_data": {"file_name": os.path.basename(graph_csv_path)},
        }
        with open(meta_yaml_path, "w") as f:
1404
1405
1406
1407
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
        label_ndata = np.random.randint(2, size=num_nodes * num_graphs)
        df = pd.DataFrame(
            {
                "node_id": np.hstack(
                    [np.arange(num_nodes) for _ in range(num_graphs)]
                ),
                "label": label_ndata,
                "graph_id": np.hstack(
                    [np.full(num_nodes, i) for i in range(num_graphs)]
                ),
            }
        )
1420
1421
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
        label_edata = np.random.randint(2, size=num_edges * num_graphs)
        df = pd.DataFrame(
            {
                "src_id": np.hstack(
                    [
                        np.random.randint(num_nodes, size=num_edges)
                        for _ in range(num_graphs)
                    ]
                ),
                "dst_id": np.hstack(
                    [
                        np.random.randint(num_nodes, size=num_edges)
                        for _ in range(num_graphs)
                    ]
                ),
                "label": label_edata,
                "graph_id": np.hstack(
                    [np.full(num_edges, i) for i in range(num_graphs)]
                ),
            }
        )
1443
1444
1445
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        label_gdata = np.random.randint(2, size=num_graphs)
1446
1447
1448
        df = pd.DataFrame(
            {"label": label_gdata, "graph_id": np.arange(num_graphs)}
        )
1449
1450
1451
1452
1453
1454
1455
        df.to_csv(graph_csv_path, index=False)

        class CustDataParser:
            def __call__(self, df):
                data = {}
                for header in df:
                    dt = df[header].to_numpy().squeeze()
1456
                    if header == "label":
1457
1458
1459
                        dt += 2
                    data[header] = dt
                return data
1460

1461
1462
1463
        # load CSVDataset with customized node/edge/gdata_parser
        # specify via dict[ntype/etype, callable]
        csv_dataset = data.CSVDataset(
1464
1465
1466
1467
1468
1469
            test_dir,
            force_reload=True,
            ndata_parser={"user": CustDataParser()},
            edata_parser={("user", "like", "item"): CustDataParser()},
            gdata_parser=CustDataParser(),
        )
1470
1471
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
1472
        assert "label" in csv_dataset.data
1473
        for i, (g, g_data) in enumerate(csv_dataset):
1474
            assert not g.is_homogeneous
Mufei Li's avatar
Mufei Li committed
1475
            assert F.asnumpy(g_data) == label_gdata[i] + 2
1476
1477
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
1478
1479
1480
1481
1482
                offset = 2 if ntype == "user" else 0
                assert np.array_equal(
                    label_ndata[i * num_nodes : (i + 1) * num_nodes] + offset,
                    F.asnumpy(g.nodes[ntype].data["label"]),
                )
1483
1484
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
1485
1486
1487
1488
1489
                offset = 2 if etype == "like" else 0
                assert np.array_equal(
                    label_edata[i * num_edges : (i + 1) * num_edges] + offset,
                    F.asnumpy(g.edges[etype].data["label"]),
                )
1490
1491
        # specify via callable
        csv_dataset = data.CSVDataset(
1492
1493
1494
1495
1496
1497
            test_dir,
            force_reload=True,
            ndata_parser=CustDataParser(),
            edata_parser=CustDataParser(),
            gdata_parser=CustDataParser(),
        )
1498
1499
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
1500
        assert "label" in csv_dataset.data
1501
1502
        for i, (g, g_data) in enumerate(csv_dataset):
            assert not g.is_homogeneous
Mufei Li's avatar
Mufei Li committed
1503
            assert F.asnumpy(g_data) == label_gdata[i] + 2
1504
1505
1506
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2
1507
1508
1509
1510
                assert np.array_equal(
                    label_ndata[i * num_nodes : (i + 1) * num_nodes] + offset,
                    F.asnumpy(g.nodes[ntype].data["label"]),
                )
1511
1512
1513
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2
1514
1515
1516
1517
                assert np.array_equal(
                    label_edata[i * num_edges : (i + 1) * num_edges] + offset,
                    F.asnumpy(g.edges[etype].data["label"]),
                )
1518
1519
1520


def _test_NodeEdgeGraphData():
1521
1522
    from dgl.data.csv_dataset_base import EdgeData, GraphData, NodeData

1523
1524
1525
    # NodeData basics
    num_nodes = 100
    node_ids = np.arange(num_nodes, dtype=np.float)
1526
    ndata = NodeData(node_ids, {})
1527
    assert np.array_equal(ndata.id, node_ids)
1528
    assert len(ndata.data) == 0
1529
    assert ndata.type == "_V"
1530
1531
    assert np.array_equal(ndata.graph_id, np.full(num_nodes, 0))
    # NodeData more
1532
    data = {"feat": np.random.rand(num_nodes, 3)}
1533
    graph_id = np.arange(num_nodes)
1534
1535
    ndata = NodeData(node_ids, data, type="user", graph_id=graph_id)
    assert ndata.type == "user"
1536
1537
1538
1539
1540
1541
1542
1543
    assert np.array_equal(ndata.graph_id, graph_id)
    assert len(ndata.data) == len(data)
    for k, v in data.items():
        assert k in ndata.data
        assert np.array_equal(ndata.data[k], v)
    # NodeData except
    expect_except = False
    try:
1544
1545
1546
1547
1548
        NodeData(
            np.arange(num_nodes),
            {"feat": np.random.rand(num_nodes + 1, 3)},
            graph_id=np.arange(num_nodes - 1),
        )
1549
1550
1551
1552
1553
1554
1555
1556
1557
    except:
        expect_except = True
    assert expect_except

    # EdgeData basics
    num_nodes = 100
    num_edges = 1000
    src_ids = np.random.randint(num_nodes, size=num_edges)
    dst_ids = np.random.randint(num_nodes, size=num_edges)
1558
    edata = EdgeData(src_ids, dst_ids, {})
1559
1560
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
1561
    assert edata.type == ("_V", "_E", "_V")
1562
1563
1564
1565
1566
    assert len(edata.data) == 0
    assert np.array_equal(edata.graph_id, np.full(num_edges, 0))
    # EdageData more
    src_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    dst_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
1567
1568
    data = {"feat": np.random.rand(num_edges, 3)}
    etype = ("user", "like", "item")
1569
    graph_ids = np.arange(num_edges)
1570
    edata = EdgeData(src_ids, dst_ids, data, type=etype, graph_id=graph_ids)
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == etype
    assert len(edata.data) == len(data)
    for k, v in data.items():
        assert k in edata.data
        assert np.array_equal(edata.data[k], v)
    assert np.array_equal(edata.graph_id, graph_ids)
    # EdgeData except
    expect_except = False
    try:
1582
1583
1584
1585
1586
1587
        EdgeData(
            np.arange(num_edges),
            np.arange(num_edges + 1),
            {"feat": np.random.rand(num_edges - 1, 3)},
            graph_id=np.arange(num_edges + 2),
        )
1588
1589
1590
1591
1592
1593
1594
    except:
        expect_except = True
    assert expect_except

    # GraphData basics
    num_graphs = 10
    graph_ids = np.arange(num_graphs)
1595
    gdata = GraphData(graph_ids, {})
1596
1597
1598
1599
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == 0
    # GraphData more
    graph_ids = np.arange(num_graphs).astype(np.float)
1600
    data = {"feat": np.random.rand(num_graphs, 3)}
1601
    gdata = GraphData(graph_ids, data)
1602
1603
1604
1605
1606
1607
1608
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == len(data)
    for k, v in data.items():
        assert k in gdata.data
        assert np.array_equal(gdata.data[k], v)


1609
1610
1611
1612
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1613
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1614
1615
def test_csvdataset():
    _test_NodeEdgeGraphData()
1616
    _test_construct_graphs_node_ids()
1617
1618
1619
1620
1621
1622
1623
1624
    _test_construct_graphs_homo()
    _test_construct_graphs_hetero()
    _test_construct_graphs_multiple()
    _test_DefaultDataParser()
    _test_load_yaml_with_sanity_check()
    _test_load_node_data_from_csv()
    _test_load_edge_data_from_csv()
    _test_load_graph_data_from_csv()
1625
1626
1627
    _test_CSVDataset_single()
    _test_CSVDataset_multiple()
    _test_CSVDataset_customized_data_parser()
1628

1629
1630
1631
1632
1633

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1634
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1635
1636
def test_as_nodepred1():
    ds = data.AmazonCoBuyComputerDataset()
1637
    print("train_mask" in ds[0].ndata)
1638
1639
1640
1641
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].num_nodes() == ds[0].num_nodes()
    assert new_ds[0].num_edges() == ds[0].num_edges()
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
    assert "train_mask" in new_ds[0].ndata
    assert F.array_equal(
        new_ds.train_idx, F.nonzero_1d(new_ds[0].ndata["train_mask"])
    )
    assert F.array_equal(
        new_ds.val_idx, F.nonzero_1d(new_ds[0].ndata["val_mask"])
    )
    assert F.array_equal(
        new_ds.test_idx, F.nonzero_1d(new_ds[0].ndata["test_mask"])
    )
1652
1653

    ds = data.AIFBDataset()
1654
1655
1656
1657
    print("train_mask" in ds[0].nodes["Personen"].data)
    new_ds = data.AsNodePredDataset(
        ds, [0.8, 0.1, 0.1], "Personen", verbose=True
    )
1658
1659
1660
    assert len(new_ds) == 1
    assert new_ds[0].ntypes == ds[0].ntypes
    assert new_ds[0].canonical_etypes == ds[0].canonical_etypes
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
    assert "train_mask" in new_ds[0].nodes["Personen"].data
    assert F.array_equal(
        new_ds.train_idx,
        F.nonzero_1d(new_ds[0].nodes["Personen"].data["train_mask"]),
    )
    assert F.array_equal(
        new_ds.val_idx,
        F.nonzero_1d(new_ds[0].nodes["Personen"].data["val_mask"]),
    )
    assert F.array_equal(
        new_ds.test_idx,
        F.nonzero_1d(new_ds[0].nodes["Personen"].data["test_mask"]),
    )


@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1680
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1681
1682
1683
1684
def test_as_nodepred2():
    # test proper reprocessing

    # create
1685
1686
1687
1688
1689
1690
    ds = data.AsNodePredDataset(
        data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1]
    )
    assert F.sum(F.astype(ds[0].ndata["train_mask"], F.int32), 0) == int(
        ds[0].num_nodes() * 0.8
    )
1691
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.8)
1692
    # read from cache
1693
1694
1695
1696
1697
1698
    ds = data.AsNodePredDataset(
        data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1]
    )
    assert F.sum(F.astype(ds[0].ndata["train_mask"], F.int32), 0) == int(
        ds[0].num_nodes() * 0.8
    )
1699
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.8)
1700
    # invalid cache, re-read
1701
1702
1703
1704
1705
1706
    ds = data.AsNodePredDataset(
        data.AmazonCoBuyComputerDataset(), [0.1, 0.1, 0.8]
    )
    assert F.sum(F.astype(ds[0].ndata["train_mask"], F.int32), 0) == int(
        ds[0].num_nodes() * 0.1
    )
1707
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.1)
1708
1709

    # create
1710
1711
1712
1713
1714
1715
1716
    ds = data.AsNodePredDataset(
        data.AIFBDataset(), [0.8, 0.1, 0.1], "Personen", verbose=True
    )
    assert F.sum(
        F.astype(ds[0].nodes["Personen"].data["train_mask"], F.int32), 0
    ) == int(ds[0].num_nodes("Personen") * 0.8)
    assert len(ds.train_idx) == int(ds[0].num_nodes("Personen") * 0.8)
1717
    # read from cache
1718
1719
1720
1721
1722
1723
1724
    ds = data.AsNodePredDataset(
        data.AIFBDataset(), [0.8, 0.1, 0.1], "Personen", verbose=True
    )
    assert F.sum(
        F.astype(ds[0].nodes["Personen"].data["train_mask"], F.int32), 0
    ) == int(ds[0].num_nodes("Personen") * 0.8)
    assert len(ds.train_idx) == int(ds[0].num_nodes("Personen") * 0.8)
1725
    # invalid cache, re-read
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
    ds = data.AsNodePredDataset(
        data.AIFBDataset(), [0.1, 0.1, 0.8], "Personen", verbose=True
    )
    assert F.sum(
        F.astype(ds[0].nodes["Personen"].data["train_mask"], F.int32), 0
    ) == int(ds[0].num_nodes("Personen") * 0.1)
    assert len(ds.train_idx) == int(ds[0].num_nodes("Personen") * 0.1)


@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="ogb only supports pytorch"
)
Minjie Wang's avatar
Minjie Wang committed
1738
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
Jinjing Zhou's avatar
Jinjing Zhou committed
1739
1740
def test_as_nodepred_ogb():
    from ogb.nodeproppred import DglNodePropPredDataset
1741
1742
1743
1744

    ds = data.AsNodePredDataset(
        DglNodePropPredDataset("ogbn-arxiv"), split_ratio=None, verbose=True
    )
1745
    split = DglNodePropPredDataset("ogbn-arxiv").get_idx_split()
1746
    train_idx, val_idx, test_idx = split["train"], split["valid"], split["test"]
1747
1748
1749
    assert F.array_equal(ds.train_idx, F.tensor(train_idx))
    assert F.array_equal(ds.val_idx, F.tensor(val_idx))
    assert F.array_equal(ds.test_idx, F.tensor(test_idx))
Jinjing Zhou's avatar
Jinjing Zhou committed
1750
    # force generate new split
1751
1752
1753
1754
1755
1756
    ds = data.AsNodePredDataset(
        DglNodePropPredDataset("ogbn-arxiv"),
        split_ratio=[0.7, 0.2, 0.1],
        verbose=True,
    )

1757

1758
1759
1760
1761
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1762
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1763
1764
def test_as_linkpred():
    # create
1765
1766
1767
1768
1769
1770
    ds = data.AsLinkPredDataset(
        data.CoraGraphDataset(),
        split_ratio=[0.8, 0.1, 0.1],
        neg_ratio=1,
        verbose=True,
    )
1771
1772
1773
1774
1775
    # Cora has 10556 edges, 10% test edges can be 1057
    assert ds.test_edges[0][0].shape[0] == 1057
    # negative samples, not guaranteed, so the assert is in a relaxed range
    assert 1000 <= ds.test_edges[1][0].shape[0] <= 1057
    # read from cache
1776
1777
1778
1779
1780
1781
    ds = data.AsLinkPredDataset(
        data.CoraGraphDataset(),
        split_ratio=[0.7, 0.1, 0.2],
        neg_ratio=2,
        verbose=True,
    )
1782
1783
1784
1785
1786
    assert ds.test_edges[0][0].shape[0] == 2112
    # negative samples, not guaranteed to be ratio 2, so the assert is in a relaxed range
    assert 4000 < ds.test_edges[1][0].shape[0] <= 4224


1787
1788
1789
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="ogb only supports pytorch"
)
1790
1791
def test_as_linkpred_ogb():
    from ogb.linkproppred import DglLinkPropPredDataset
1792
1793
1794
1795

    ds = data.AsLinkPredDataset(
        DglLinkPropPredDataset("ogbl-collab"), split_ratio=None, verbose=True
    )
1796
1797
1798
    # original dataset has 46329 test edges
    assert ds.test_edges[0][0].shape[0] == 46329
    # force generate new split
1799
1800
1801
1802
1803
    ds = data.AsLinkPredDataset(
        DglLinkPropPredDataset("ogbl-collab"),
        split_ratio=[0.7, 0.2, 0.1],
        verbose=True,
    )
1804
1805
    assert ds.test_edges[0][0].shape[0] == 235812

1806
1807
1808
1809
1810

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1811
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1812
1813
1814
1815
1816
1817
def test_as_nodepred_csvdataset():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path = os.path.join(test_dir, "test_edges.csv")
        nodes_csv_path = os.path.join(test_dir, "test_nodes.csv")
1818
1819
1820
1821
1822
1823
1824
        meta_yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default_name",
            "node_data": [{"file_name": os.path.basename(nodes_csv_path)}],
            "edge_data": [{"file_name": os.path.basename(edges_csv_path)}],
        }
        with open(meta_yaml_path, "w") as f:
1825
1826
1827
1828
1829
1830
1831
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        num_classes = num_nodes
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.arange(num_classes)
1832
1833
1834
1835
1836
1837
1838
        df = pd.DataFrame(
            {
                "node_id": np.arange(num_nodes),
                "label": label_ndata,
                "feat": [line.tolist() for line in feat_ndata],
            }
        )
1839
        df.to_csv(nodes_csv_path, index=False)
1840
1841
1842
1843
1844
1845
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
            }
        )
1846
1847
        df.to_csv(edges_csv_path, index=False)

1848
        ds = data.CSVDataset(test_dir, force_reload=True)
1849
1850
1851
1852
1853
1854
1855
        assert "feat" in ds[0].ndata
        assert "label" in ds[0].ndata
        assert "train_mask" not in ds[0].ndata
        assert not hasattr(ds[0], "num_classes")
        new_ds = data.AsNodePredDataset(
            ds, split_ratio=[0.8, 0.1, 0.1], force_reload=True
        )
1856
        assert new_ds.num_classes == num_classes
1857
1858
1859
        assert "feat" in new_ds[0].ndata
        assert "label" in new_ds[0].ndata
        assert "train_mask" in new_ds[0].ndata
1860

1861
1862
1863
1864
1865

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1866
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
Mufei Li's avatar
Mufei Li committed
1867
def test_as_graphpred():
1868
    ds = data.GINDataset(name="MUTAG", self_loop=True)
Mufei Li's avatar
Mufei Li committed
1869
1870
1871
1872
1873
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 188
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

1874
    ds = data.FakeNewsDataset("politifact", "profile")
Mufei Li's avatar
Mufei Li committed
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
    new_ds = data.AsGraphPredDataset(ds, verbose=True)
    assert len(new_ds) == 314
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.QM7bDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 7211
    assert new_ds.num_tasks == 14
    assert new_ds.num_classes is None

1886
    ds = data.QM9Dataset(label_keys=["mu", "gap"])
Mufei Li's avatar
Mufei Li committed
1887
1888
1889
1890
1891
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

1892
    ds = data.QM9EdgeDataset(label_keys=["mu", "alpha"])
Mufei Li's avatar
Mufei Li committed
1893
1894
1895
1896
1897
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

1898
    ds = data.TUDataset("DD")
Mufei Li's avatar
Mufei Li committed
1899
1900
1901
1902
1903
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

1904
    ds = data.LegacyTUDataset("DD")
Mufei Li's avatar
Mufei Li committed
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.BA2MotifDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1000
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

1916
1917
1918
1919
1920

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1921
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
Mufei Li's avatar
Mufei Li committed
1922
def test_as_graphpred_reprocess():
1923
1924
1925
    ds = data.AsGraphPredDataset(
        data.GINDataset(name="MUTAG", self_loop=True), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1926
1927
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
1928
1929
1930
    ds = data.AsGraphPredDataset(
        data.GINDataset(name="MUTAG", self_loop=True), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1931
1932
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
1933
1934
1935
    ds = data.AsGraphPredDataset(
        data.GINDataset(name="MUTAG", self_loop=True), [0.1, 0.1, 0.8]
    )
Mufei Li's avatar
Mufei Li committed
1936
1937
    assert len(ds.train_idx) == int(len(ds) * 0.1)

1938
1939
1940
    ds = data.AsGraphPredDataset(
        data.FakeNewsDataset("politifact", "profile"), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1941
1942
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
1943
1944
1945
    ds = data.AsGraphPredDataset(
        data.FakeNewsDataset("politifact", "profile"), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1946
1947
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
1948
1949
1950
    ds = data.AsGraphPredDataset(
        data.FakeNewsDataset("politifact", "profile"), [0.1, 0.1, 0.8]
    )
Mufei Li's avatar
Mufei Li committed
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

1962
1963
1964
    ds = data.AsGraphPredDataset(
        data.QM9Dataset(label_keys=["mu", "gap"]), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1965
1966
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
1967
1968
1969
    ds = data.AsGraphPredDataset(
        data.QM9Dataset(label_keys=["mu", "gap"]), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1970
1971
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
1972
1973
1974
    ds = data.AsGraphPredDataset(
        data.QM9Dataset(label_keys=["mu", "gap"]), [0.1, 0.1, 0.8]
    )
Mufei Li's avatar
Mufei Li committed
1975
1976
    assert len(ds.train_idx) == int(len(ds) * 0.1)

1977
1978
1979
    ds = data.AsGraphPredDataset(
        data.QM9EdgeDataset(label_keys=["mu", "alpha"]), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1980
1981
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
1982
1983
1984
    ds = data.AsGraphPredDataset(
        data.QM9EdgeDataset(label_keys=["mu", "alpha"]), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1985
1986
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
1987
1988
1989
    ds = data.AsGraphPredDataset(
        data.QM9EdgeDataset(label_keys=["mu", "alpha"]), [0.1, 0.1, 0.8]
    )
Mufei Li's avatar
Mufei Li committed
1990
1991
    assert len(ds.train_idx) == int(len(ds) * 0.1)

1992
    ds = data.AsGraphPredDataset(data.TUDataset("DD"), [0.8, 0.1, 0.1])
Mufei Li's avatar
Mufei Li committed
1993
1994
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
1995
    ds = data.AsGraphPredDataset(data.TUDataset("DD"), [0.8, 0.1, 0.1])
Mufei Li's avatar
Mufei Li committed
1996
1997
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
1998
    ds = data.AsGraphPredDataset(data.TUDataset("DD"), [0.1, 0.1, 0.8])
Mufei Li's avatar
Mufei Li committed
1999
2000
    assert len(ds.train_idx) == int(len(ds) * 0.1)

2001
    ds = data.AsGraphPredDataset(data.LegacyTUDataset("DD"), [0.8, 0.1, 0.1])
Mufei Li's avatar
Mufei Li committed
2002
2003
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
2004
    ds = data.AsGraphPredDataset(data.LegacyTUDataset("DD"), [0.8, 0.1, 0.1])
Mufei Li's avatar
Mufei Li committed
2005
2006
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
2007
    ds = data.AsGraphPredDataset(data.LegacyTUDataset("DD"), [0.1, 0.1, 0.8])
Mufei Li's avatar
Mufei Li committed
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

2019
2020
2021
2022

@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="ogb only supports pytorch"
)
Mufei Li's avatar
Mufei Li committed
2023
2024
def test_as_graphpred_ogb():
    from ogb.graphproppred import DglGraphPropPredDataset
2025
2026
2027
2028

    ds = data.AsGraphPredDataset(
        DglGraphPropPredDataset("ogbg-molhiv"), split_ratio=None, verbose=True
    )
Mufei Li's avatar
Mufei Li committed
2029
2030
    assert len(ds.train_idx) == 32901
    # force generate new split
2031
2032
2033
2034
2035
    ds = data.AsGraphPredDataset(
        DglGraphPropPredDataset("ogbg-molhiv"),
        split_ratio=[0.6, 0.2, 0.2],
        verbose=True,
    )
Mufei Li's avatar
Mufei Li committed
2036
2037
    assert len(ds.train_idx) == 24676

2038
2039

if __name__ == "__main__":
2040
    test_minigc()
2041
    test_gin()
2042
    test_data_hash()
2043
2044
2045
    test_tudataset_regression()
    test_fraud()
    test_fakenews()
2046
    test_csvdataset()
2047
2048
    test_as_nodepred1()
    test_as_nodepred2()
2049
    test_as_nodepred_csvdataset()