"docs/git@developer.sourcefind.cn:OpenDAS/apex.git" did not exist on "7f39db93317e75d5cc7dffbb7eb0e10bce27b22c"
test_data.py 73.4 KB
Newer Older
1
import gzip
2
import io
3
import os
4
import tarfile
5
import tempfile
6
import unittest
7

8
import backend as F
9
10
11

import dgl
import dgl.data as data
12
import numpy as np
13
14
import pandas as pd
import pytest
15
import yaml
16
from dgl import DGLError
17

18
19
20
21
22

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
23
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
24
25
26
27
def test_minigc():
    ds = data.MiniGCDataset(16, 10, 20)
    g, l = list(zip(*ds))
    print(g, l)
28
29
30
31
32
    g1 = ds[0][0]
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.MiniGCDataset(16, 10, 20, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
33

34
35
36
37
38

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
39
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
40
41
def test_gin():
    ds_n_graphs = {
42
43
44
45
46
        "MUTAG": 188,
        "IMDBBINARY": 1000,
        "IMDBMULTI": 1500,
        "PROTEINS": 1113,
        "PTC": 344,
47
    }
48
    transform = dgl.AddSelfLoop(allow_duplicate=True)
49
50
51
    for name, n_graphs in ds_n_graphs.items():
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False)
        assert len(ds) == n_graphs, (len(ds), name)
52
        g1 = ds[0][0]
53
54
55
        ds = data.GINDataset(
            name, self_loop=False, degree_as_nlabel=False, transform=transform
        )
56
57
        g2 = ds[0][0]
        assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
Mufei Li's avatar
Mufei Li committed
58
        assert ds.num_classes == ds.gclasses
59

60
61
62
63
64

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
65
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
66
def test_fraud():
67
68
    transform = dgl.AddSelfLoop(allow_duplicate=True)

69
    g = data.FraudDataset("amazon")[0]
70
    assert g.num_nodes() == 11944
71
    num_edges1 = g.num_edges()
72
    g2 = data.FraudDataset("amazon", transform=transform)[0]
73
74
    # 3 edge types
    assert g2.num_edges() - num_edges1 == g.num_nodes() * 3
75
76
77

    g = data.FraudAmazonDataset()[0]
    assert g.num_nodes() == 11944
78
79
80
    g2 = data.FraudAmazonDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
81
82
83

    g = data.FraudYelpDataset()[0]
    assert g.num_nodes() == 45954
84
85
86
    g2 = data.FraudYelpDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
87

88
89
90
91
92

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
93
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
94
def test_fakenews():
95
96
    transform = dgl.AddSelfLoop(allow_duplicate=True)

97
    ds = data.FakeNewsDataset("politifact", "bert")
98
    assert len(ds) == 314
99
    g = ds[0][0]
100
    g2 = data.FakeNewsDataset("politifact", "bert", transform=transform)[0][0]
101
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
102

103
    ds = data.FakeNewsDataset("gossipcop", "profile")
104
    assert len(ds) == 5464
105
    g = ds[0][0]
106
    g2 = data.FakeNewsDataset("gossipcop", "profile", transform=transform)[0][0]
107
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
Jinjing Zhou's avatar
Jinjing Zhou committed
108

109
110
111
112
113

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
114
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
115
def test_tudataset_regression():
116
    ds = data.TUDataset("ZINC_test", force_reload=True)
Mufei Li's avatar
Mufei Li committed
117
    assert ds.num_classes == ds.num_labels
Jinjing Zhou's avatar
Jinjing Zhou committed
118
    assert len(ds) == 5000
119
    g = ds[0][0]
Jinjing Zhou's avatar
Jinjing Zhou committed
120

121
    transform = dgl.AddSelfLoop(allow_duplicate=True)
122
    ds = data.TUDataset("ZINC_test", force_reload=True, transform=transform)
123
124
    g2 = ds[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
125

126
127
128
129
130

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
131
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
132
133
134
def test_data_hash():
    class HashTestDataset(data.DGLDataset):
        def __init__(self, hash_key=()):
135
            super(HashTestDataset, self).__init__("hashtest", hash_key=hash_key)
136

137
138
139
        def _load(self):
            pass

140
141
142
    a = HashTestDataset((True, 0, "1", (1, 2, 3)))
    b = HashTestDataset((True, 0, "1", (1, 2, 3)))
    c = HashTestDataset((True, 0, "1", (1, 2, 4)))
143
144
145
    assert a.hash == b.hash
    assert a.hash != c.hash

146

147
148
149
150
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
151
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
152
def test_citation_graph():
153
154
    transform = dgl.AddSelfLoop(allow_duplicate=True)

155
    # cora
156
    g = data.CoraGraphDataset(force_reload=True, reorder=True)[0]
157
158
159
160
    assert g.num_nodes() == 2708
    assert g.num_edges() == 10556
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
161
162
    g2 = data.CoraGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
163
164

    # Citeseer
165
    g = data.CiteseerGraphDataset(force_reload=True, reorder=True)[0]
166
167
168
169
    assert g.num_nodes() == 3327
    assert g.num_edges() == 9228
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
170
171
    g2 = data.CiteseerGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
172
173

    # Pubmed
174
    g = data.PubmedGraphDataset(force_reload=True, reorder=True)[0]
175
176
177
178
    assert g.num_nodes() == 19717
    assert g.num_edges() == 88651
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
179
180
    g2 = data.PubmedGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
181
182


183
184
185
186
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
187
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
188
def test_gnn_benchmark():
189
190
    transform = dgl.AddSelfLoop(allow_duplicate=True)

191
192
193
194
195
196
    # AmazonCoBuyComputerDataset
    g = data.AmazonCoBuyComputerDataset()[0]
    assert g.num_nodes() == 13752
    assert g.num_edges() == 491722
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
197
198
    g2 = data.AmazonCoBuyComputerDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
199
200
201
202
203
204
205

    # AmazonCoBuyPhotoDataset
    g = data.AmazonCoBuyPhotoDataset()[0]
    assert g.num_nodes() == 7650
    assert g.num_edges() == 238163
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
206
207
    g2 = data.AmazonCoBuyPhotoDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
208
209
210
211
212
213
214

    # CoauthorPhysicsDataset
    g = data.CoauthorPhysicsDataset()[0]
    assert g.num_nodes() == 34493
    assert g.num_edges() == 495924
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
215
216
    g2 = data.CoauthorPhysicsDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
217
218
219
220
221
222
223

    # CoauthorCSDataset
    g = data.CoauthorCSDataset()[0]
    assert g.num_nodes() == 18333
    assert g.num_edges() == 163788
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
224
225
    g2 = data.CoauthorCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
226
227
228
229
230
231
232

    # CoraFullDataset
    g = data.CoraFullDataset()[0]
    assert g.num_nodes() == 19793
    assert g.num_edges() == 126842
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
233
234
    g2 = data.CoraFullDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
235
236


237
238
239
240
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
241
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
242
243
244
245
246
247
248
249
def test_reddit():
    # RedditDataset
    g = data.RedditDataset()[0]
    assert g.num_nodes() == 232965
    assert g.num_edges() == 114615892
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

250
251
252
253
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.RedditDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

254
255
256
257
258

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
259
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
260
261
262
263
def test_explain_syn():
    dataset = data.BAShapeDataset()
    assert dataset.num_classes == 4
    g = dataset[0]
264
265
    assert "label" in g.ndata
    assert "feat" in g.ndata
266
267
268
269
270
271
272
273
274
275
276

    g1 = data.BAShapeDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.BAShapeDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.BACommunityDataset()
    assert dataset.num_classes == 8
    g = dataset[0]
277
278
    assert "label" in g.ndata
    assert "feat" in g.ndata
279
280
281
282
283
284
285
286
287
288
289

    g1 = data.BACommunityDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.BACommunityDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.TreeCycleDataset()
    assert dataset.num_classes == 2
    g = dataset[0]
290
291
    assert "label" in g.ndata
    assert "feat" in g.ndata
292
293
294
295
296
297
298
299
300
301
302

    g1 = data.TreeCycleDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.TreeCycleDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.TreeGridDataset()
    assert dataset.num_classes == 2
    g = dataset[0]
303
304
    assert "label" in g.ndata
    assert "feat" in g.ndata
305
306
307
308
309
310
311
312
313
314
315

    g1 = data.TreeGridDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.TreeGridDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.BA2MotifDataset()
    assert dataset.num_classes == 2
    g, label = dataset[0]
316
    assert "feat" in g.ndata
317

318
319
320
321
322

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
323
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
324
325
326
327
328
329
330
331
332
333
334
def test_wiki_cs():
    g = data.WikiCSDataset()[0]
    assert g.num_nodes() == 11701
    assert g.num_edges() == 431726
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.WikiCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

335

336
@unittest.skip(reason="Dataset too large to download for the latest CI.")
Minjie Wang's avatar
Minjie Wang committed
337
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
338
339
340
341
342
343
344
345
346
347
348
def test_yelp():
    g = data.YelpDataset(reorder=True)[0]
    assert g.num_nodes() == 716847
    assert g.num_edges() == 13954819
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.YelpDataset(reorder=True, transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

349
350
351
352
353

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
354
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
355
356
357
358
359
360
361
362
363
364
def test_flickr():
    g = data.FlickrDataset(reorder=True)[0]
    assert g.num_nodes() == 89250
    assert g.num_edges() == 899756
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.FlickrDataset(reorder=True, transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
365

366
367
368
369
370

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
371
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
372
373
374
def test_extract_archive():
    # gzip
    with tempfile.TemporaryDirectory() as src_dir:
375
376
        gz_file = "gz_archive"
        gz_path = os.path.join(src_dir, gz_file + ".gz")
377
        content = b"test extract archive gzip"
378
        with gzip.open(gz_path, "wb") as f:
379
380
381
382
383
            f.write(content)
        with tempfile.TemporaryDirectory() as dst_dir:
            data.utils.extract_archive(gz_path, dst_dir, overwrite=True)
            assert os.path.exists(os.path.join(dst_dir, gz_file))

384
385
386
387
388
389
390
391
392
393
394
395
396
397
    # tar
    with tempfile.TemporaryDirectory() as src_dir:
        tar_file = "tar_archive"
        tar_path = os.path.join(src_dir, tar_file + ".tar")
        # default encode to utf8
        content = "test extract archive tar\n".encode()
        info = tarfile.TarInfo(name="tar_archive")
        info.size = len(content)
        with tarfile.open(tar_path, "w") as f:
            f.addfile(info, io.BytesIO(content))
        with tempfile.TemporaryDirectory() as dst_dir:
            data.utils.extract_archive(tar_path, dst_dir, overwrite=True)
            assert os.path.exists(os.path.join(dst_dir, tar_file))

398

399
def _test_construct_graphs_node_ids():
400
401
402
403
404
405
    from dgl.data.csv_dataset_base import (
        DGLGraphConstructor,
        EdgeData,
        NodeData,
    )

406
407
408
409
410
411
412
413
414
415
416
    num_nodes = 100
    num_edges = 1000

    # node IDs are required to be unique
    node_ids = np.random.choice(np.arange(num_nodes / 2), num_nodes)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    expect_except = False
    try:
417
        _, _ = DGLGraphConstructor.construct_graphs(node_data, edge_data)
418
419
420
421
422
423
424
425
426
427
428
    except:
        expect_except = True
    assert expect_except

    # node IDs are already labelled from 0~num_nodes-1
    node_ids = np.arange(num_nodes)
    np.random.shuffle(node_ids)
    _, idx = np.unique(node_ids, return_index=True)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_feat = np.random.rand(num_nodes, 3)
429
    node_data = NodeData(node_ids, {"feat": node_feat})
430
431
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
432
433
        node_data, edge_data
    )
434
435
436
437
438
439
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)
440
441
442
    assert F.array_equal(
        F.tensor(node_feat[idx], dtype=F.float32), g.ndata["feat"]
    )
443
444
445

    # node IDs are mixed with numeric and non-numeric values
    # homogeneous graph
446
    node_ids = [1, 2, 3, "a"]
447
    src_ids = [1, 2, 3]
448
    dst_ids = ["a", 1, 2]
449
450
451
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
452
453
        node_data, edge_data
    )
454
455
456
457
458
459
460
461
462
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)

    # heterogeneous graph
    node_ids_user = [1, 2, 3]
463
    node_ids_item = ["a", "b", "c"]
464
465
    src_ids = node_ids_user
    dst_ids = node_ids_item
466
467
468
    node_data_user = NodeData(node_ids_user, {}, type="user")
    node_data_item = NodeData(node_ids_item, {}, type="item")
    edge_data = EdgeData(src_ids, dst_ids, {}, type=("user", "like", "item"))
469
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
470
471
        [node_data_user, node_data_item], edge_data
    )
472
473
474
475
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
476
477
    assert g.num_nodes("user") == len(node_ids_user)
    assert g.num_nodes("item") == len(node_ids_item)
478
479
480
    assert g.num_edges() == len(src_ids)


481
def _test_construct_graphs_homo():
482
483
484
485
486
487
    from dgl.data.csv_dataset_base import (
        DGLGraphConstructor,
        EdgeData,
        NodeData,
    )

488
    # node_id could be non-sorted, non-numeric.
489
490
491
492
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    node_ids = np.random.choice(
493
494
        np.arange(num_nodes * 2), size=num_nodes, replace=False
    )
495
    assert len(node_ids) == num_nodes
496
    # to be non-sorted
497
    np.random.shuffle(node_ids)
498
    # to be non-numeric
499
500
501
502
503
    node_ids = ["id_{}".format(id) for id in node_ids]
    t_ndata = {
        "feat": np.random.rand(num_nodes, num_dims),
        "label": np.random.randint(2, size=num_nodes),
    }
504
    _, u_indices = np.unique(node_ids, return_index=True)
505
506
507
508
    ndata = {
        "feat": t_ndata["feat"][u_indices],
        "label": t_ndata["label"][u_indices],
    }
509
    node_data = NodeData(node_ids, t_ndata)
510
511
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
512
513
514
515
    edata = {
        "feat": np.random.rand(num_edges, num_dims),
        "label": np.random.randint(2, size=num_edges),
    }
516
517
    edge_data = EdgeData(src_ids, dst_ids, edata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
518
519
        node_data, edge_data
    )
520
521
522
523
524
525
526
527
528
529
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == num_nodes
    assert g.num_edges() == num_edges

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
530
531
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
532
533
534
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key]
            )

535
536
537
538
539
    assert_data(ndata, g.ndata)
    assert_data(edata, g.edata)


def _test_construct_graphs_hetero():
540
541
542
543
544
545
    from dgl.data.csv_dataset_base import (
        DGLGraphConstructor,
        EdgeData,
        NodeData,
    )

546
    # node_id/src_id/dst_id could be non-sorted, duplicated, non-numeric.
547
548
549
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
550
    ntypes = ["user", "item"]
551
552
553
554
555
    node_data = []
    node_ids_dict = {}
    ndata_dict = {}
    for ntype in ntypes:
        node_ids = np.random.choice(
556
557
            np.arange(num_nodes * 2), size=num_nodes, replace=False
        )
558
        assert len(node_ids) == num_nodes
559
        # to be non-sorted
560
        np.random.shuffle(node_ids)
561
        # to be non-numeric
562
563
564
565
566
        node_ids = ["id_{}".format(id) for id in node_ids]
        t_ndata = {
            "feat": np.random.rand(num_nodes, num_dims),
            "label": np.random.randint(2, size=num_nodes),
        }
567
        _, u_indices = np.unique(node_ids, return_index=True)
568
569
570
571
        ndata = {
            "feat": t_ndata["feat"][u_indices],
            "label": t_ndata["label"][u_indices],
        }
572
        node_data.append(NodeData(node_ids, t_ndata, type=ntype))
573
574
        node_ids_dict[ntype] = node_ids
        ndata_dict[ntype] = ndata
575
    etypes = [("user", "follow", "user"), ("user", "like", "item")]
576
577
578
579
580
    edge_data = []
    edata_dict = {}
    for src_type, e_type, dst_type in etypes:
        src_ids = np.random.choice(node_ids_dict[src_type], size=num_edges)
        dst_ids = np.random.choice(node_ids_dict[dst_type], size=num_edges)
581
582
583
584
585
586
587
        edata = {
            "feat": np.random.rand(num_edges, num_dims),
            "label": np.random.randint(2, size=num_edges),
        }
        edge_data.append(
            EdgeData(src_ids, dst_ids, edata, type=(src_type, e_type, dst_type))
        )
588
        edata_dict[(src_type, e_type, dst_type)] = edata
589
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
590
591
        node_data, edge_data
    )
592
593
594
595
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
596
597
    assert g.num_nodes() == num_nodes * len(ntypes)
    assert g.num_edges() == num_edges * len(etypes)
598
599
600
601

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
602
603
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
604
605
606
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key]
            )

607
608
609
610
611
612
613
614
615
    for ntype in g.ntypes:
        assert g.num_nodes(ntype) == num_nodes
        assert_data(ndata_dict[ntype], g.nodes[ntype].data)
    for etype in g.canonical_etypes:
        assert g.num_edges(etype) == num_edges
        assert_data(edata_dict[etype], g.edges[etype].data)


def _test_construct_graphs_multiple():
616
617
618
619
620
621
622
    from dgl.data.csv_dataset_base import (
        DGLGraphConstructor,
        EdgeData,
        GraphData,
        NodeData,
    )

623
624
625
626
627
628
629
630
631
632
633
634
    num_nodes = 100
    num_edges = 1000
    num_graphs = 10
    num_dims = 3
    node_ids = np.array([], dtype=np.int)
    src_ids = np.array([], dtype=np.int)
    dst_ids = np.array([], dtype=np.int)
    ngraph_ids = np.array([], dtype=np.int)
    egraph_ids = np.array([], dtype=np.int)
    u_indices = np.array([], dtype=np.int)
    for i in range(num_graphs):
        l_node_ids = np.random.choice(
635
636
            np.arange(num_nodes * 2), size=num_nodes, replace=False
        )
637
638
639
640
        node_ids = np.append(node_ids, l_node_ids)
        _, l_u_indices = np.unique(l_node_ids, return_index=True)
        u_indices = np.append(u_indices, l_u_indices)
        ngraph_ids = np.append(ngraph_ids, np.full(num_nodes, i))
641
642
643
644
645
646
        src_ids = np.append(
            src_ids, np.random.choice(l_node_ids, size=num_edges)
        )
        dst_ids = np.append(
            dst_ids, np.random.choice(l_node_ids, size=num_edges)
        )
647
        egraph_ids = np.append(egraph_ids, np.full(num_edges, i))
648
649
650
651
652
    ndata = {
        "feat": np.random.rand(num_nodes * num_graphs, num_dims),
        "label": np.random.randint(2, size=num_nodes * num_graphs),
    }
    ngraph_ids = ["graph_{}".format(id) for id in ngraph_ids]
653
    node_data = NodeData(node_ids, ndata, graph_id=ngraph_ids)
654
655
656
657
658
    egraph_ids = ["graph_{}".format(id) for id in egraph_ids]
    edata = {
        "feat": np.random.rand(num_edges * num_graphs, num_dims),
        "label": np.random.randint(2, size=num_edges * num_graphs),
    }
659
    edge_data = EdgeData(src_ids, dst_ids, edata, graph_id=egraph_ids)
660
661
662
663
664
    gdata = {
        "feat": np.random.rand(num_graphs, num_dims),
        "label": np.random.randint(2, size=num_graphs),
    }
    graph_ids = ["graph_{}".format(id) for id in np.arange(num_graphs)]
665
    graph_data = GraphData(graph_ids, gdata)
666
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
667
668
        node_data, edge_data, graph_data
    )
669
670
671
    assert len(graphs) == num_graphs
    assert len(data_dict) == len(gdata)
    for k, v in data_dict.items():
672
        assert F.dtype(v) != F.float64
673
674
675
676
        assert F.array_equal(
            F.reshape(F.tensor(gdata[k], dtype=F.dtype(v)), (len(graphs), -1)),
            v,
        )
677
678
679
680
681
682
683
684
    for i, g in enumerate(graphs):
        assert g.is_homogeneous
        assert g.num_nodes() == num_nodes
        assert g.num_edges() == num_edges

        def assert_data(lhs, rhs, size, node=False):
            for key, value in lhs.items():
                assert key in rhs
685
                value = value[i * size : (i + 1) * size]
686
                if node:
687
                    indices = u_indices[i * size : (i + 1) * size]
688
                    value = value[indices]
689
690
                assert F.dtype(rhs[key]) != F.float64
                assert F.array_equal(
691
692
693
                    F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key]
                )

694
695
696
697
        assert_data(ndata, g.ndata, num_nodes, node=True)
        assert_data(edata, g.edata, num_edges)

    # Graph IDs found in node/edge CSV but not in graph CSV
698
    graph_data = GraphData(np.arange(num_graphs - 2), {})
699
700
    expect_except = False
    try:
701
        _, _ = DGLGraphConstructor.construct_graphs(
702
703
            node_data, edge_data, graph_data
        )
704
705
706
707
708
709
    except:
        expect_except = True
    assert expect_except


def _test_DefaultDataParser():
710
    from dgl.data.csv_dataset_base import DefaultDataParser
711

712
713
714
715
716
717
718
719
720
    # common csv
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        num_nodes = 5
        num_labels = 3
        num_dims = 2
        node_id = np.arange(num_nodes)
        label = np.random.randint(num_labels, size=num_nodes)
        feat = np.random.rand(num_nodes, num_dims)
721
722
723
724
725
726
727
        df = pd.DataFrame(
            {
                "node_id": node_id,
                "label": label,
                "feat": [line.tolist() for line in feat],
            }
        )
728
        df.to_csv(csv_path, index=False)
729
        dp = DefaultDataParser()
730
731
        df = pd.read_csv(csv_path)
        dt = dp(df)
732
733
734
        assert np.array_equal(node_id, dt["node_id"])
        assert np.array_equal(label, dt["label"])
        assert np.array_equal(feat, dt["feat"])
735
736
737
    # string consists of non-numeric values
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
738
        df = pd.DataFrame({"label": ["a", "b", "c"]})
739
        df.to_csv(csv_path, index=False)
740
        dp = DefaultDataParser()
741
742
743
744
745
746
747
748
749
750
        df = pd.read_csv(csv_path)
        expect_except = False
        try:
            dt = dp(df)
        except:
            expect_except = True
        assert expect_except
    # csv has index column which is ignored as it's unnamed
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
751
        df = pd.DataFrame({"label": [1, 2, 3]})
752
        df.to_csv(csv_path)
753
        dp = DefaultDataParser()
754
755
756
757
758
759
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert len(dt) == 1


def _test_load_yaml_with_sanity_check():
760
    from dgl.data.csv_dataset_base import load_yaml_with_sanity_check
761

762
    with tempfile.TemporaryDirectory() as test_dir:
763
        yaml_path = os.path.join(test_dir, "meta.yaml")
764
        # workable but meaningless usually
765
766
767
768
769
770
        yaml_data = {
            "dataset_name": "default",
            "node_data": [],
            "edge_data": [],
        }
        with open(yaml_path, "w") as f:
771
            yaml.dump(yaml_data, f, sort_keys=False)
772
        meta = load_yaml_with_sanity_check(yaml_path)
773
774
775
        assert meta.version == "1.0.0"
        assert meta.dataset_name == "default"
        assert meta.separator == ","
776
777
778
779
        assert len(meta.node_data) == 0
        assert len(meta.edge_data) == 0
        assert meta.graph_data is None
        # minimum with required fields only
780
781
782
783
784
785
786
        yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default",
            "node_data": [{"file_name": "nodes.csv"}],
            "edge_data": [{"file_name": "edges.csv"}],
        }
        with open(yaml_path, "w") as f:
787
            yaml.dump(yaml_data, f, sort_keys=False)
788
        meta = load_yaml_with_sanity_check(yaml_path)
789
        for ndata in meta.node_data:
790
791
792
793
            assert ndata.file_name == "nodes.csv"
            assert ndata.ntype == "_V"
            assert ndata.graph_id_field == "graph_id"
            assert ndata.node_id_field == "node_id"
794
        for edata in meta.edge_data:
795
796
797
798
799
            assert edata.file_name == "edges.csv"
            assert edata.etype == ["_V", "_E", "_V"]
            assert edata.graph_id_field == "graph_id"
            assert edata.src_id_field == "src_id"
            assert edata.dst_id_field == "dst_id"
800
        # optional fields are specified
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
        yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default",
            "separator": "|",
            "node_data": [
                {
                    "file_name": "nodes.csv",
                    "ntype": "user",
                    "graph_id_field": "xxx",
                    "node_id_field": "xxx",
                }
            ],
            "edge_data": [
                {
                    "file_name": "edges.csv",
                    "etype": ["user", "follow", "user"],
                    "graph_id_field": "xxx",
                    "src_id_field": "xxx",
                    "dst_id_field": "xxx",
                }
            ],
            "graph_data": {"file_name": "graph.csv", "graph_id_field": "xxx"},
        }
        with open(yaml_path, "w") as f:
825
            yaml.dump(yaml_data, f, sort_keys=False)
826
        meta = load_yaml_with_sanity_check(yaml_path)
827
828
        assert len(meta.node_data) == 1
        ndata = meta.node_data[0]
829
830
831
        assert ndata.ntype == "user"
        assert ndata.graph_id_field == "xxx"
        assert ndata.node_id_field == "xxx"
832
833
        assert len(meta.edge_data) == 1
        edata = meta.edge_data[0]
834
835
836
837
        assert edata.etype == ["user", "follow", "user"]
        assert edata.graph_id_field == "xxx"
        assert edata.src_id_field == "xxx"
        assert edata.dst_id_field == "xxx"
838
        assert meta.graph_data is not None
839
840
        assert meta.graph_data.file_name == "graph.csv"
        assert meta.graph_data.graph_id_field == "xxx"
841
        # some required fields are missing
842
843
844
845
846
        yaml_data = {
            "dataset_name": "default",
            "node_data": [],
            "edge_data": [],
        }
847
848
849
        for field in yaml_data.keys():
            ydata = {k: v for k, v in yaml_data.items()}
            ydata.pop(field)
850
            with open(yaml_path, "w") as f:
851
852
853
                yaml.dump(ydata, f, sort_keys=False)
            expect_except = False
            try:
854
                meta = load_yaml_with_sanity_check(yaml_path)
855
856
857
858
            except:
                expect_except = True
            assert expect_except
        # inapplicable version
859
860
861
862
863
864
865
        yaml_data = {
            "version": "0.0.0",
            "dataset_name": "default",
            "node_data": [{"file_name": "nodes_0.csv"}],
            "edge_data": [{"file_name": "edges_0.csv"}],
        }
        with open(yaml_path, "w") as f:
866
867
868
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
869
            meta = load_yaml_with_sanity_check(yaml_path)
870
871
872
873
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate node types
874
875
876
877
878
879
880
881
882
883
        yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default",
            "node_data": [
                {"file_name": "nodes.csv"},
                {"file_name": "nodes.csv"},
            ],
            "edge_data": [{"file_name": "edges.csv"}],
        }
        with open(yaml_path, "w") as f:
884
885
886
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
887
            meta = load_yaml_with_sanity_check(yaml_path)
888
889
890
891
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate edge types
892
893
894
895
896
897
898
899
900
901
        yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default",
            "node_data": [{"file_name": "nodes.csv"}],
            "edge_data": [
                {"file_name": "edges.csv"},
                {"file_name": "edges.csv"},
            ],
        }
        with open(yaml_path, "w") as f:
902
903
904
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
905
            meta = load_yaml_with_sanity_check(yaml_path)
906
907
908
909
910
911
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_node_data_from_csv():
912
913
    from dgl.data.csv_dataset_base import DefaultDataParser, MetaNode, NodeData

914
915
916
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        # minimum
917
918
        df = pd.DataFrame({"node_id": np.arange(num_nodes)})
        csv_path = os.path.join(test_dir, "nodes.csv")
919
        df.to_csv(csv_path, index=False)
920
        meta_node = MetaNode(file_name=csv_path)
921
922
        node_data = NodeData.load_from_csv(meta_node, DefaultDataParser())
        assert np.array_equal(df["node_id"], node_data.id)
923
924
925
        assert len(node_data.data) == 0

        # common case
926
927
928
929
930
931
932
        df = pd.DataFrame(
            {
                "node_id": np.arange(num_nodes),
                "label": np.random.randint(3, size=num_nodes),
            }
        )
        csv_path = os.path.join(test_dir, "nodes.csv")
933
        df.to_csv(csv_path, index=False)
934
        meta_node = MetaNode(file_name=csv_path)
935
936
        node_data = NodeData.load_from_csv(meta_node, DefaultDataParser())
        assert np.array_equal(df["node_id"], node_data.id)
937
        assert len(node_data.data) == 1
938
        assert np.array_equal(df["label"], node_data.data["label"])
939
        assert np.array_equal(np.full(num_nodes, 0), node_data.graph_id)
940
        assert node_data.type == "_V"
941
942

        # add more fields into nodes.csv
943
944
945
946
947
948
949
950
        df = pd.DataFrame(
            {
                "node_id": np.arange(num_nodes),
                "label": np.random.randint(3, size=num_nodes),
                "graph_id": np.full(num_nodes, 1),
            }
        )
        csv_path = os.path.join(test_dir, "nodes.csv")
951
        df.to_csv(csv_path, index=False)
952
        meta_node = MetaNode(file_name=csv_path)
953
954
        node_data = NodeData.load_from_csv(meta_node, DefaultDataParser())
        assert np.array_equal(df["node_id"], node_data.id)
955
        assert len(node_data.data) == 1
956
957
958
        assert np.array_equal(df["label"], node_data.data["label"])
        assert np.array_equal(df["graph_id"], node_data.graph_id)
        assert node_data.type == "_V"
959
960

        # required header is missing
961
962
        df = pd.DataFrame({"label": np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, "nodes.csv")
963
        df.to_csv(csv_path, index=False)
964
        meta_node = MetaNode(file_name=csv_path)
965
966
        expect_except = False
        try:
967
            NodeData.load_from_csv(meta_node, DefaultDataParser())
968
969
970
971
972
973
        except:
            expect_except = True
        assert expect_except


def _test_load_edge_data_from_csv():
974
975
    from dgl.data.csv_dataset_base import DefaultDataParser, EdgeData, MetaEdge

976
977
978
979
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        num_edges = 1000
        # minimum
980
981
982
983
984
985
986
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
            }
        )
        csv_path = os.path.join(test_dir, "edges.csv")
987
        df.to_csv(csv_path, index=False)
988
        meta_edge = MetaEdge(file_name=csv_path)
989
990
991
        edge_data = EdgeData.load_from_csv(meta_edge, DefaultDataParser())
        assert np.array_equal(df["src_id"], edge_data.src)
        assert np.array_equal(df["dst_id"], edge_data.dst)
992
993
994
        assert len(edge_data.data) == 0

        # common case
995
996
997
998
999
1000
1001
1002
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
                "label": np.random.randint(3, size=num_edges),
            }
        )
        csv_path = os.path.join(test_dir, "edges.csv")
1003
        df.to_csv(csv_path, index=False)
1004
        meta_edge = MetaEdge(file_name=csv_path)
1005
1006
1007
        edge_data = EdgeData.load_from_csv(meta_edge, DefaultDataParser())
        assert np.array_equal(df["src_id"], edge_data.src)
        assert np.array_equal(df["dst_id"], edge_data.dst)
1008
        assert len(edge_data.data) == 1
1009
        assert np.array_equal(df["label"], edge_data.data["label"])
1010
        assert np.array_equal(np.full(num_edges, 0), edge_data.graph_id)
1011
        assert edge_data.type == ("_V", "_E", "_V")
1012
1013

        # add more fields into edges.csv
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
                "graph_id": np.arange(num_edges),
                "feat": np.random.randint(3, size=num_edges),
                "label": np.random.randint(3, size=num_edges),
            }
        )
        csv_path = os.path.join(test_dir, "edges.csv")
1024
        df.to_csv(csv_path, index=False)
1025
        meta_edge = MetaEdge(file_name=csv_path)
1026
1027
1028
        edge_data = EdgeData.load_from_csv(meta_edge, DefaultDataParser())
        assert np.array_equal(df["src_id"], edge_data.src)
        assert np.array_equal(df["dst_id"], edge_data.dst)
1029
        assert len(edge_data.data) == 2
1030
1031
1032
1033
        assert np.array_equal(df["feat"], edge_data.data["feat"])
        assert np.array_equal(df["label"], edge_data.data["label"])
        assert np.array_equal(df["graph_id"], edge_data.graph_id)
        assert edge_data.type == ("_V", "_E", "_V")
1034
1035

        # required headers are missing
1036
        df = pd.DataFrame(
1037
            {"src_id": np.random.randint(num_nodes, size=num_edges)}
1038
1039
        )
        csv_path = os.path.join(test_dir, "edges.csv")
1040
        df.to_csv(csv_path, index=False)
1041
        meta_edge = MetaEdge(file_name=csv_path)
1042
1043
        expect_except = False
        try:
1044
            EdgeData.load_from_csv(meta_edge, DefaultDataParser())
1045
1046
1047
        except DGLError:
            expect_except = True
        assert expect_except
1048
        df = pd.DataFrame(
1049
            {"dst_id": np.random.randint(num_nodes, size=num_edges)}
1050
1051
        )
        csv_path = os.path.join(test_dir, "edges.csv")
1052
        df.to_csv(csv_path, index=False)
1053
        meta_edge = MetaEdge(file_name=csv_path)
1054
1055
        expect_except = False
        try:
1056
            EdgeData.load_from_csv(meta_edge, DefaultDataParser())
1057
1058
1059
1060
1061
1062
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_graph_data_from_csv():
1063
1064
1065
1066
1067
1068
    from dgl.data.csv_dataset_base import (
        DefaultDataParser,
        GraphData,
        MetaGraph,
    )

1069
1070
1071
    with tempfile.TemporaryDirectory() as test_dir:
        num_graphs = 100
        # minimum
1072
1073
        df = pd.DataFrame({"graph_id": np.arange(num_graphs)})
        csv_path = os.path.join(test_dir, "graph.csv")
1074
        df.to_csv(csv_path, index=False)
1075
        meta_graph = MetaGraph(file_name=csv_path)
1076
1077
        graph_data = GraphData.load_from_csv(meta_graph, DefaultDataParser())
        assert np.array_equal(df["graph_id"], graph_data.graph_id)
1078
1079
1080
        assert len(graph_data.data) == 0

        # common case
1081
1082
1083
1084
1085
1086
1087
        df = pd.DataFrame(
            {
                "graph_id": np.arange(num_graphs),
                "label": np.random.randint(3, size=num_graphs),
            }
        )
        csv_path = os.path.join(test_dir, "graph.csv")
1088
        df.to_csv(csv_path, index=False)
1089
        meta_graph = MetaGraph(file_name=csv_path)
1090
1091
        graph_data = GraphData.load_from_csv(meta_graph, DefaultDataParser())
        assert np.array_equal(df["graph_id"], graph_data.graph_id)
1092
        assert len(graph_data.data) == 1
1093
        assert np.array_equal(df["label"], graph_data.data["label"])
1094
1095

        # add more fields into graph.csv
1096
1097
1098
1099
1100
1101
1102
1103
        df = pd.DataFrame(
            {
                "graph_id": np.arange(num_graphs),
                "feat": np.random.randint(3, size=num_graphs),
                "label": np.random.randint(3, size=num_graphs),
            }
        )
        csv_path = os.path.join(test_dir, "graph.csv")
1104
        df.to_csv(csv_path, index=False)
1105
        meta_graph = MetaGraph(file_name=csv_path)
1106
1107
        graph_data = GraphData.load_from_csv(meta_graph, DefaultDataParser())
        assert np.array_equal(df["graph_id"], graph_data.graph_id)
1108
        assert len(graph_data.data) == 2
1109
1110
        assert np.array_equal(df["feat"], graph_data.data["feat"])
        assert np.array_equal(df["label"], graph_data.data["label"])
1111
1112

        # required header is missing
1113
1114
        df = pd.DataFrame({"label": np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, "graph.csv")
1115
        df.to_csv(csv_path, index=False)
1116
        meta_graph = MetaGraph(file_name=csv_path)
1117
1118
        expect_except = False
        try:
1119
            GraphData.load_from_csv(meta_graph, DefaultDataParser())
1120
1121
1122
1123
1124
        except DGLError:
            expect_except = True
        assert expect_except


1125
def _test_CSVDataset_single():
1126
1127
1128
1129
1130
1131
1132
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
        meta_yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default_name",
            "node_data": [
                {
                    "file_name": os.path.basename(nodes_csv_path_0),
                    "ntype": "user",
                },
                {
                    "file_name": os.path.basename(nodes_csv_path_1),
                    "ntype": "item",
                },
            ],
            "edge_data": [
                {
                    "file_name": os.path.basename(edges_csv_path_0),
                    "etype": ["user", "follow", "user"],
                },
                {
                    "file_name": os.path.basename(edges_csv_path_1),
                    "etype": ["user", "like", "item"],
                },
            ],
        }
        with open(meta_yaml_path, "w") as f:
1158
1159
1160
1161
1162
1163
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes)
1164
1165
1166
1167
1168
1169
1170
        df = pd.DataFrame(
            {
                "node_id": np.arange(num_nodes),
                "label": label_ndata,
                "feat": [line.tolist() for line in feat_ndata],
            }
        )
1171
1172
1173
1174
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges, num_dims)
        label_edata = np.random.randint(2, size=num_edges)
1175
1176
1177
1178
1179
1180
1181
1182
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
                "label": label_edata,
                "feat": [line.tolist() for line in feat_edata],
            }
        )
1183
1184
1185
1186
1187
1188
1189
1190
1191
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)

        # load CSVDataset
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
1192
            csv_dataset = data.CSVDataset(test_dir, force_reload=force_reload)
1193
1194
1195
1196
1197
1198
            assert len(csv_dataset) == 1
            g = csv_dataset[0]
            assert not g.is_homogeneous
            assert csv_dataset.has_cache()
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
1199
1200
1201
1202
1203
1204
1205
                assert F.array_equal(
                    F.tensor(feat_ndata, dtype=F.float32),
                    g.nodes[ntype].data["feat"],
                )
                assert np.array_equal(
                    label_ndata, F.asnumpy(g.nodes[ntype].data["label"])
                )
1206
1207
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
1208
1209
1210
1211
1212
1213
1214
                assert F.array_equal(
                    F.tensor(feat_edata, dtype=F.float32),
                    g.edges[etype].data["feat"],
                )
                assert np.array_equal(
                    label_edata, F.asnumpy(g.edges[etype].data["label"])
                )
1215
1216


1217
def _test_CSVDataset_multiple():
1218
1219
1220
1221
1222
1223
1224
1225
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
        meta_yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default_name",
            "node_data": [
                {
                    "file_name": os.path.basename(nodes_csv_path_0),
                    "ntype": "user",
                },
                {
                    "file_name": os.path.basename(nodes_csv_path_1),
                    "ntype": "item",
                },
            ],
            "edge_data": [
                {
                    "file_name": os.path.basename(edges_csv_path_0),
                    "etype": ["user", "follow", "user"],
                },
                {
                    "file_name": os.path.basename(edges_csv_path_1),
                    "etype": ["user", "like", "item"],
                },
            ],
            "graph_data": {"file_name": os.path.basename(graph_csv_path)},
        }
        with open(meta_yaml_path, "w") as f:
1252
1253
1254
1255
1256
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        num_dims = 3
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
        feat_ndata = np.random.rand(num_nodes * num_graphs, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes * num_graphs)
        df = pd.DataFrame(
            {
                "node_id": np.hstack(
                    [np.arange(num_nodes) for _ in range(num_graphs)]
                ),
                "label": label_ndata,
                "feat": [line.tolist() for line in feat_ndata],
                "graph_id": np.hstack(
                    [np.full(num_nodes, i) for i in range(num_graphs)]
                ),
            }
        )
1271
1272
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
        feat_edata = np.random.rand(num_edges * num_graphs, num_dims)
        label_edata = np.random.randint(2, size=num_edges * num_graphs)
        df = pd.DataFrame(
            {
                "src_id": np.hstack(
                    [
                        np.random.randint(num_nodes, size=num_edges)
                        for _ in range(num_graphs)
                    ]
                ),
                "dst_id": np.hstack(
                    [
                        np.random.randint(num_nodes, size=num_edges)
                        for _ in range(num_graphs)
                    ]
                ),
                "label": label_edata,
                "feat": [line.tolist() for line in feat_edata],
                "graph_id": np.hstack(
                    [np.full(num_edges, i) for i in range(num_graphs)]
                ),
            }
        )
1296
1297
1298
1299
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        feat_gdata = np.random.rand(num_graphs, num_dims)
        label_gdata = np.random.randint(2, size=num_graphs)
1300
1301
1302
1303
1304
1305
1306
        df = pd.DataFrame(
            {
                "label": label_gdata,
                "feat": [line.tolist() for line in feat_gdata],
                "graph_id": np.arange(num_graphs),
            }
        )
1307
1308
        df.to_csv(graph_csv_path, index=False)

1309
        # load CSVDataset with default node/edge/gdata_parser
1310
1311
1312
1313
1314
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
1315
            csv_dataset = data.CSVDataset(test_dir, force_reload=force_reload)
1316
1317
1318
            assert len(csv_dataset) == num_graphs
            assert csv_dataset.has_cache()
            assert len(csv_dataset.data) == 2
1319
1320
1321
1322
1323
            assert "feat" in csv_dataset.data
            assert "label" in csv_dataset.data
            assert F.array_equal(
                F.tensor(feat_gdata, dtype=F.float32), csv_dataset.data["feat"]
            )
1324
            for i, (g, g_data) in enumerate(csv_dataset):
1325
                assert not g.is_homogeneous
1326
1327
1328
1329
                assert F.asnumpy(g_data["label"]) == label_gdata[i]
                assert F.array_equal(
                    g_data["feat"], F.tensor(feat_gdata[i], dtype=F.float32)
                )
1330
1331
                for ntype in g.ntypes:
                    assert g.num_nodes(ntype) == num_nodes
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
                    assert F.array_equal(
                        F.tensor(
                            feat_ndata[i * num_nodes : (i + 1) * num_nodes],
                            dtype=F.float32,
                        ),
                        g.nodes[ntype].data["feat"],
                    )
                    assert np.array_equal(
                        label_ndata[i * num_nodes : (i + 1) * num_nodes],
                        F.asnumpy(g.nodes[ntype].data["label"]),
                    )
1343
1344
                for etype in g.etypes:
                    assert g.num_edges(etype) == num_edges
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
                    assert F.array_equal(
                        F.tensor(
                            feat_edata[i * num_edges : (i + 1) * num_edges],
                            dtype=F.float32,
                        ),
                        g.edges[etype].data["feat"],
                    )
                    assert np.array_equal(
                        label_edata[i * num_edges : (i + 1) * num_edges],
                        F.asnumpy(g.edges[etype].data["label"]),
                    )
1356
1357


1358
def _test_CSVDataset_customized_data_parser():
1359
1360
1361
1362
1363
1364
1365
1366
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
        meta_yaml_data = {
            "dataset_name": "default_name",
            "node_data": [
                {
                    "file_name": os.path.basename(nodes_csv_path_0),
                    "ntype": "user",
                },
                {
                    "file_name": os.path.basename(nodes_csv_path_1),
                    "ntype": "item",
                },
            ],
            "edge_data": [
                {
                    "file_name": os.path.basename(edges_csv_path_0),
                    "etype": ["user", "follow", "user"],
                },
                {
                    "file_name": os.path.basename(edges_csv_path_1),
                    "etype": ["user", "like", "item"],
                },
            ],
            "graph_data": {"file_name": os.path.basename(graph_csv_path)},
        }
        with open(meta_yaml_path, "w") as f:
1392
1393
1394
1395
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
        label_ndata = np.random.randint(2, size=num_nodes * num_graphs)
        df = pd.DataFrame(
            {
                "node_id": np.hstack(
                    [np.arange(num_nodes) for _ in range(num_graphs)]
                ),
                "label": label_ndata,
                "graph_id": np.hstack(
                    [np.full(num_nodes, i) for i in range(num_graphs)]
                ),
            }
        )
1408
1409
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
        label_edata = np.random.randint(2, size=num_edges * num_graphs)
        df = pd.DataFrame(
            {
                "src_id": np.hstack(
                    [
                        np.random.randint(num_nodes, size=num_edges)
                        for _ in range(num_graphs)
                    ]
                ),
                "dst_id": np.hstack(
                    [
                        np.random.randint(num_nodes, size=num_edges)
                        for _ in range(num_graphs)
                    ]
                ),
                "label": label_edata,
                "graph_id": np.hstack(
                    [np.full(num_edges, i) for i in range(num_graphs)]
                ),
            }
        )
1431
1432
1433
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        label_gdata = np.random.randint(2, size=num_graphs)
1434
1435
1436
        df = pd.DataFrame(
            {"label": label_gdata, "graph_id": np.arange(num_graphs)}
        )
1437
1438
1439
1440
1441
1442
1443
        df.to_csv(graph_csv_path, index=False)

        class CustDataParser:
            def __call__(self, df):
                data = {}
                for header in df:
                    dt = df[header].to_numpy().squeeze()
1444
                    if header == "label":
1445
1446
1447
                        dt += 2
                    data[header] = dt
                return data
1448

1449
1450
1451
        # load CSVDataset with customized node/edge/gdata_parser
        # specify via dict[ntype/etype, callable]
        csv_dataset = data.CSVDataset(
1452
1453
1454
1455
1456
1457
            test_dir,
            force_reload=True,
            ndata_parser={"user": CustDataParser()},
            edata_parser={("user", "like", "item"): CustDataParser()},
            gdata_parser=CustDataParser(),
        )
1458
1459
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
1460
        assert "label" in csv_dataset.data
1461
        for i, (g, g_data) in enumerate(csv_dataset):
1462
            assert not g.is_homogeneous
Mufei Li's avatar
Mufei Li committed
1463
            assert F.asnumpy(g_data) == label_gdata[i] + 2
1464
1465
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
1466
1467
1468
1469
1470
                offset = 2 if ntype == "user" else 0
                assert np.array_equal(
                    label_ndata[i * num_nodes : (i + 1) * num_nodes] + offset,
                    F.asnumpy(g.nodes[ntype].data["label"]),
                )
1471
1472
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
1473
1474
1475
1476
1477
                offset = 2 if etype == "like" else 0
                assert np.array_equal(
                    label_edata[i * num_edges : (i + 1) * num_edges] + offset,
                    F.asnumpy(g.edges[etype].data["label"]),
                )
1478
1479
        # specify via callable
        csv_dataset = data.CSVDataset(
1480
1481
1482
1483
1484
1485
            test_dir,
            force_reload=True,
            ndata_parser=CustDataParser(),
            edata_parser=CustDataParser(),
            gdata_parser=CustDataParser(),
        )
1486
1487
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
1488
        assert "label" in csv_dataset.data
1489
1490
        for i, (g, g_data) in enumerate(csv_dataset):
            assert not g.is_homogeneous
Mufei Li's avatar
Mufei Li committed
1491
            assert F.asnumpy(g_data) == label_gdata[i] + 2
1492
1493
1494
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2
1495
1496
1497
1498
                assert np.array_equal(
                    label_ndata[i * num_nodes : (i + 1) * num_nodes] + offset,
                    F.asnumpy(g.nodes[ntype].data["label"]),
                )
1499
1500
1501
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2
1502
1503
1504
1505
                assert np.array_equal(
                    label_edata[i * num_edges : (i + 1) * num_edges] + offset,
                    F.asnumpy(g.edges[etype].data["label"]),
                )
1506
1507
1508


def _test_NodeEdgeGraphData():
1509
1510
    from dgl.data.csv_dataset_base import EdgeData, GraphData, NodeData

1511
1512
1513
    # NodeData basics
    num_nodes = 100
    node_ids = np.arange(num_nodes, dtype=np.float)
1514
    ndata = NodeData(node_ids, {})
1515
    assert np.array_equal(ndata.id, node_ids)
1516
    assert len(ndata.data) == 0
1517
    assert ndata.type == "_V"
1518
1519
    assert np.array_equal(ndata.graph_id, np.full(num_nodes, 0))
    # NodeData more
1520
    data = {"feat": np.random.rand(num_nodes, 3)}
1521
    graph_id = np.arange(num_nodes)
1522
1523
    ndata = NodeData(node_ids, data, type="user", graph_id=graph_id)
    assert ndata.type == "user"
1524
1525
1526
1527
1528
1529
1530
1531
    assert np.array_equal(ndata.graph_id, graph_id)
    assert len(ndata.data) == len(data)
    for k, v in data.items():
        assert k in ndata.data
        assert np.array_equal(ndata.data[k], v)
    # NodeData except
    expect_except = False
    try:
1532
1533
1534
1535
1536
        NodeData(
            np.arange(num_nodes),
            {"feat": np.random.rand(num_nodes + 1, 3)},
            graph_id=np.arange(num_nodes - 1),
        )
1537
1538
1539
1540
1541
1542
1543
1544
1545
    except:
        expect_except = True
    assert expect_except

    # EdgeData basics
    num_nodes = 100
    num_edges = 1000
    src_ids = np.random.randint(num_nodes, size=num_edges)
    dst_ids = np.random.randint(num_nodes, size=num_edges)
1546
    edata = EdgeData(src_ids, dst_ids, {})
1547
1548
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
1549
    assert edata.type == ("_V", "_E", "_V")
1550
1551
1552
1553
1554
    assert len(edata.data) == 0
    assert np.array_equal(edata.graph_id, np.full(num_edges, 0))
    # EdageData more
    src_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    dst_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
1555
1556
    data = {"feat": np.random.rand(num_edges, 3)}
    etype = ("user", "like", "item")
1557
    graph_ids = np.arange(num_edges)
1558
    edata = EdgeData(src_ids, dst_ids, data, type=etype, graph_id=graph_ids)
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == etype
    assert len(edata.data) == len(data)
    for k, v in data.items():
        assert k in edata.data
        assert np.array_equal(edata.data[k], v)
    assert np.array_equal(edata.graph_id, graph_ids)
    # EdgeData except
    expect_except = False
    try:
1570
1571
1572
1573
1574
1575
        EdgeData(
            np.arange(num_edges),
            np.arange(num_edges + 1),
            {"feat": np.random.rand(num_edges - 1, 3)},
            graph_id=np.arange(num_edges + 2),
        )
1576
1577
1578
1579
1580
1581
1582
    except:
        expect_except = True
    assert expect_except

    # GraphData basics
    num_graphs = 10
    graph_ids = np.arange(num_graphs)
1583
    gdata = GraphData(graph_ids, {})
1584
1585
1586
1587
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == 0
    # GraphData more
    graph_ids = np.arange(num_graphs).astype(np.float)
1588
    data = {"feat": np.random.rand(num_graphs, 3)}
1589
    gdata = GraphData(graph_ids, data)
1590
1591
1592
1593
1594
1595
1596
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == len(data)
    for k, v in data.items():
        assert k in gdata.data
        assert np.array_equal(gdata.data[k], v)


1597
1598
1599
1600
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1601
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1602
1603
def test_csvdataset():
    _test_NodeEdgeGraphData()
1604
    _test_construct_graphs_node_ids()
1605
1606
1607
1608
1609
1610
1611
1612
    _test_construct_graphs_homo()
    _test_construct_graphs_hetero()
    _test_construct_graphs_multiple()
    _test_DefaultDataParser()
    _test_load_yaml_with_sanity_check()
    _test_load_node_data_from_csv()
    _test_load_edge_data_from_csv()
    _test_load_graph_data_from_csv()
1613
1614
1615
    _test_CSVDataset_single()
    _test_CSVDataset_multiple()
    _test_CSVDataset_customized_data_parser()
1616

1617
1618
1619
1620
1621

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1622
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1623
1624
def test_add_nodepred_split():
    dataset = data.AmazonCoBuyComputerDataset()
1625
    print("train_mask" in dataset[0].ndata)
1626
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1])
1627
    assert "train_mask" in dataset[0].ndata
1628
1629

    dataset = data.AIFBDataset()
1630
1631
1632
1633
1634
    print("train_mask" in dataset[0].nodes["Publikationen"].data)
    data.utils.add_nodepred_split(
        dataset, [0.8, 0.1, 0.1], ntype="Publikationen"
    )
    assert "train_mask" in dataset[0].nodes["Publikationen"].data
1635

1636
1637
1638
1639
1640

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1641
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1642
1643
def test_as_nodepred1():
    ds = data.AmazonCoBuyComputerDataset()
1644
    print("train_mask" in ds[0].ndata)
1645
1646
1647
1648
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].num_nodes() == ds[0].num_nodes()
    assert new_ds[0].num_edges() == ds[0].num_edges()
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
    assert "train_mask" in new_ds[0].ndata
    assert F.array_equal(
        new_ds.train_idx, F.nonzero_1d(new_ds[0].ndata["train_mask"])
    )
    assert F.array_equal(
        new_ds.val_idx, F.nonzero_1d(new_ds[0].ndata["val_mask"])
    )
    assert F.array_equal(
        new_ds.test_idx, F.nonzero_1d(new_ds[0].ndata["test_mask"])
    )
1659
1660

    ds = data.AIFBDataset()
1661
1662
1663
1664
    print("train_mask" in ds[0].nodes["Personen"].data)
    new_ds = data.AsNodePredDataset(
        ds, [0.8, 0.1, 0.1], "Personen", verbose=True
    )
1665
1666
1667
    assert len(new_ds) == 1
    assert new_ds[0].ntypes == ds[0].ntypes
    assert new_ds[0].canonical_etypes == ds[0].canonical_etypes
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
    assert "train_mask" in new_ds[0].nodes["Personen"].data
    assert F.array_equal(
        new_ds.train_idx,
        F.nonzero_1d(new_ds[0].nodes["Personen"].data["train_mask"]),
    )
    assert F.array_equal(
        new_ds.val_idx,
        F.nonzero_1d(new_ds[0].nodes["Personen"].data["val_mask"]),
    )
    assert F.array_equal(
        new_ds.test_idx,
        F.nonzero_1d(new_ds[0].nodes["Personen"].data["test_mask"]),
    )


@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1687
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1688
1689
1690
1691
def test_as_nodepred2():
    # test proper reprocessing

    # create
1692
1693
1694
1695
1696
1697
    ds = data.AsNodePredDataset(
        data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1]
    )
    assert F.sum(F.astype(ds[0].ndata["train_mask"], F.int32), 0) == int(
        ds[0].num_nodes() * 0.8
    )
1698
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.8)
1699
    # read from cache
1700
1701
1702
1703
1704
1705
    ds = data.AsNodePredDataset(
        data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1]
    )
    assert F.sum(F.astype(ds[0].ndata["train_mask"], F.int32), 0) == int(
        ds[0].num_nodes() * 0.8
    )
1706
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.8)
1707
    # invalid cache, re-read
1708
1709
1710
1711
1712
1713
    ds = data.AsNodePredDataset(
        data.AmazonCoBuyComputerDataset(), [0.1, 0.1, 0.8]
    )
    assert F.sum(F.astype(ds[0].ndata["train_mask"], F.int32), 0) == int(
        ds[0].num_nodes() * 0.1
    )
1714
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.1)
1715
1716

    # create
1717
1718
1719
1720
1721
1722
1723
    ds = data.AsNodePredDataset(
        data.AIFBDataset(), [0.8, 0.1, 0.1], "Personen", verbose=True
    )
    assert F.sum(
        F.astype(ds[0].nodes["Personen"].data["train_mask"], F.int32), 0
    ) == int(ds[0].num_nodes("Personen") * 0.8)
    assert len(ds.train_idx) == int(ds[0].num_nodes("Personen") * 0.8)
1724
    # read from cache
1725
1726
1727
1728
1729
1730
1731
    ds = data.AsNodePredDataset(
        data.AIFBDataset(), [0.8, 0.1, 0.1], "Personen", verbose=True
    )
    assert F.sum(
        F.astype(ds[0].nodes["Personen"].data["train_mask"], F.int32), 0
    ) == int(ds[0].num_nodes("Personen") * 0.8)
    assert len(ds.train_idx) == int(ds[0].num_nodes("Personen") * 0.8)
1732
    # invalid cache, re-read
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
    ds = data.AsNodePredDataset(
        data.AIFBDataset(), [0.1, 0.1, 0.8], "Personen", verbose=True
    )
    assert F.sum(
        F.astype(ds[0].nodes["Personen"].data["train_mask"], F.int32), 0
    ) == int(ds[0].num_nodes("Personen") * 0.1)
    assert len(ds.train_idx) == int(ds[0].num_nodes("Personen") * 0.1)


@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="ogb only supports pytorch"
)
Minjie Wang's avatar
Minjie Wang committed
1745
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
Jinjing Zhou's avatar
Jinjing Zhou committed
1746
1747
def test_as_nodepred_ogb():
    from ogb.nodeproppred import DglNodePropPredDataset
1748
1749
1750
1751

    ds = data.AsNodePredDataset(
        DglNodePropPredDataset("ogbn-arxiv"), split_ratio=None, verbose=True
    )
1752
    split = DglNodePropPredDataset("ogbn-arxiv").get_idx_split()
1753
    train_idx, val_idx, test_idx = split["train"], split["valid"], split["test"]
1754
1755
1756
    assert F.array_equal(ds.train_idx, F.tensor(train_idx))
    assert F.array_equal(ds.val_idx, F.tensor(val_idx))
    assert F.array_equal(ds.test_idx, F.tensor(test_idx))
Jinjing Zhou's avatar
Jinjing Zhou committed
1757
    # force generate new split
1758
1759
1760
1761
1762
1763
    ds = data.AsNodePredDataset(
        DglNodePropPredDataset("ogbn-arxiv"),
        split_ratio=[0.7, 0.2, 0.1],
        verbose=True,
    )

1764

1765
1766
1767
1768
@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1769
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1770
1771
def test_as_linkpred():
    # create
1772
1773
1774
1775
1776
1777
    ds = data.AsLinkPredDataset(
        data.CoraGraphDataset(),
        split_ratio=[0.8, 0.1, 0.1],
        neg_ratio=1,
        verbose=True,
    )
1778
1779
1780
1781
1782
    # Cora has 10556 edges, 10% test edges can be 1057
    assert ds.test_edges[0][0].shape[0] == 1057
    # negative samples, not guaranteed, so the assert is in a relaxed range
    assert 1000 <= ds.test_edges[1][0].shape[0] <= 1057
    # read from cache
1783
1784
1785
1786
1787
1788
    ds = data.AsLinkPredDataset(
        data.CoraGraphDataset(),
        split_ratio=[0.7, 0.1, 0.2],
        neg_ratio=2,
        verbose=True,
    )
1789
1790
1791
1792
1793
    assert ds.test_edges[0][0].shape[0] == 2112
    # negative samples, not guaranteed to be ratio 2, so the assert is in a relaxed range
    assert 4000 < ds.test_edges[1][0].shape[0] <= 4224


1794
1795
1796
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="ogb only supports pytorch"
)
1797
1798
def test_as_linkpred_ogb():
    from ogb.linkproppred import DglLinkPropPredDataset
1799
1800
1801
1802

    ds = data.AsLinkPredDataset(
        DglLinkPropPredDataset("ogbl-collab"), split_ratio=None, verbose=True
    )
1803
1804
1805
    # original dataset has 46329 test edges
    assert ds.test_edges[0][0].shape[0] == 46329
    # force generate new split
1806
1807
1808
1809
1810
    ds = data.AsLinkPredDataset(
        DglLinkPropPredDataset("ogbl-collab"),
        split_ratio=[0.7, 0.2, 0.1],
        verbose=True,
    )
1811
1812
    assert ds.test_edges[0][0].shape[0] == 235812

1813
1814
1815
1816
1817

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1818
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
1819
1820
1821
1822
1823
1824
def test_as_nodepred_csvdataset():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path = os.path.join(test_dir, "test_edges.csv")
        nodes_csv_path = os.path.join(test_dir, "test_nodes.csv")
1825
1826
1827
1828
1829
1830
1831
        meta_yaml_data = {
            "version": "1.0.0",
            "dataset_name": "default_name",
            "node_data": [{"file_name": os.path.basename(nodes_csv_path)}],
            "edge_data": [{"file_name": os.path.basename(edges_csv_path)}],
        }
        with open(meta_yaml_path, "w") as f:
1832
1833
1834
1835
1836
1837
1838
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        num_classes = num_nodes
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.arange(num_classes)
1839
1840
1841
1842
1843
1844
1845
        df = pd.DataFrame(
            {
                "node_id": np.arange(num_nodes),
                "label": label_ndata,
                "feat": [line.tolist() for line in feat_ndata],
            }
        )
1846
        df.to_csv(nodes_csv_path, index=False)
1847
1848
1849
1850
1851
1852
        df = pd.DataFrame(
            {
                "src_id": np.random.randint(num_nodes, size=num_edges),
                "dst_id": np.random.randint(num_nodes, size=num_edges),
            }
        )
1853
1854
        df.to_csv(edges_csv_path, index=False)

1855
        ds = data.CSVDataset(test_dir, force_reload=True)
1856
1857
1858
1859
1860
1861
1862
        assert "feat" in ds[0].ndata
        assert "label" in ds[0].ndata
        assert "train_mask" not in ds[0].ndata
        assert not hasattr(ds[0], "num_classes")
        new_ds = data.AsNodePredDataset(
            ds, split_ratio=[0.8, 0.1, 0.1], force_reload=True
        )
1863
        assert new_ds.num_classes == num_classes
1864
1865
1866
        assert "feat" in new_ds[0].ndata
        assert "label" in new_ds[0].ndata
        assert "train_mask" in new_ds[0].ndata
1867

1868
1869
1870
1871
1872

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1873
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
Mufei Li's avatar
Mufei Li committed
1874
def test_as_graphpred():
1875
    ds = data.GINDataset(name="MUTAG", self_loop=True)
Mufei Li's avatar
Mufei Li committed
1876
1877
1878
1879
1880
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 188
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

1881
    ds = data.FakeNewsDataset("politifact", "profile")
Mufei Li's avatar
Mufei Li committed
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
    new_ds = data.AsGraphPredDataset(ds, verbose=True)
    assert len(new_ds) == 314
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.QM7bDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 7211
    assert new_ds.num_tasks == 14
    assert new_ds.num_classes is None

1893
    ds = data.QM9Dataset(label_keys=["mu", "gap"])
Mufei Li's avatar
Mufei Li committed
1894
1895
1896
1897
1898
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

1899
    ds = data.QM9EdgeDataset(label_keys=["mu", "alpha"])
Mufei Li's avatar
Mufei Li committed
1900
1901
1902
1903
1904
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

1905
    ds = data.TUDataset("DD")
Mufei Li's avatar
Mufei Li committed
1906
1907
1908
1909
1910
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

1911
    ds = data.LegacyTUDataset("DD")
Mufei Li's avatar
Mufei Li committed
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.BA2MotifDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1000
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

1923
1924
1925
1926
1927

@unittest.skipIf(
    F._default_context_str == "gpu",
    reason="Datasets don't need to be tested on GPU.",
)
Minjie Wang's avatar
Minjie Wang committed
1928
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Skip MXNet")
Mufei Li's avatar
Mufei Li committed
1929
def test_as_graphpred_reprocess():
1930
1931
1932
    ds = data.AsGraphPredDataset(
        data.GINDataset(name="MUTAG", self_loop=True), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1933
1934
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
1935
1936
1937
    ds = data.AsGraphPredDataset(
        data.GINDataset(name="MUTAG", self_loop=True), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1938
1939
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
1940
1941
1942
    ds = data.AsGraphPredDataset(
        data.GINDataset(name="MUTAG", self_loop=True), [0.1, 0.1, 0.8]
    )
Mufei Li's avatar
Mufei Li committed
1943
1944
    assert len(ds.train_idx) == int(len(ds) * 0.1)

1945
1946
1947
    ds = data.AsGraphPredDataset(
        data.FakeNewsDataset("politifact", "profile"), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1948
1949
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
1950
1951
1952
    ds = data.AsGraphPredDataset(
        data.FakeNewsDataset("politifact", "profile"), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1953
1954
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
1955
1956
1957
    ds = data.AsGraphPredDataset(
        data.FakeNewsDataset("politifact", "profile"), [0.1, 0.1, 0.8]
    )
Mufei Li's avatar
Mufei Li committed
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

1969
1970
1971
    ds = data.AsGraphPredDataset(
        data.QM9Dataset(label_keys=["mu", "gap"]), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1972
1973
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
1974
1975
1976
    ds = data.AsGraphPredDataset(
        data.QM9Dataset(label_keys=["mu", "gap"]), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1977
1978
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
1979
1980
1981
    ds = data.AsGraphPredDataset(
        data.QM9Dataset(label_keys=["mu", "gap"]), [0.1, 0.1, 0.8]
    )
Mufei Li's avatar
Mufei Li committed
1982
1983
    assert len(ds.train_idx) == int(len(ds) * 0.1)

1984
1985
1986
    ds = data.AsGraphPredDataset(
        data.QM9EdgeDataset(label_keys=["mu", "alpha"]), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1987
1988
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
1989
1990
1991
    ds = data.AsGraphPredDataset(
        data.QM9EdgeDataset(label_keys=["mu", "alpha"]), [0.8, 0.1, 0.1]
    )
Mufei Li's avatar
Mufei Li committed
1992
1993
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
1994
1995
1996
    ds = data.AsGraphPredDataset(
        data.QM9EdgeDataset(label_keys=["mu", "alpha"]), [0.1, 0.1, 0.8]
    )
Mufei Li's avatar
Mufei Li committed
1997
1998
    assert len(ds.train_idx) == int(len(ds) * 0.1)

1999
    ds = data.AsGraphPredDataset(data.TUDataset("DD"), [0.8, 0.1, 0.1])
Mufei Li's avatar
Mufei Li committed
2000
2001
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
2002
    ds = data.AsGraphPredDataset(data.TUDataset("DD"), [0.8, 0.1, 0.1])
Mufei Li's avatar
Mufei Li committed
2003
2004
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
2005
    ds = data.AsGraphPredDataset(data.TUDataset("DD"), [0.1, 0.1, 0.8])
Mufei Li's avatar
Mufei Li committed
2006
2007
    assert len(ds.train_idx) == int(len(ds) * 0.1)

2008
    ds = data.AsGraphPredDataset(data.LegacyTUDataset("DD"), [0.8, 0.1, 0.1])
Mufei Li's avatar
Mufei Li committed
2009
2010
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
2011
    ds = data.AsGraphPredDataset(data.LegacyTUDataset("DD"), [0.8, 0.1, 0.1])
Mufei Li's avatar
Mufei Li committed
2012
2013
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
2014
    ds = data.AsGraphPredDataset(data.LegacyTUDataset("DD"), [0.1, 0.1, 0.8])
Mufei Li's avatar
Mufei Li committed
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

2026
2027
2028
2029

@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="ogb only supports pytorch"
)
Mufei Li's avatar
Mufei Li committed
2030
2031
def test_as_graphpred_ogb():
    from ogb.graphproppred import DglGraphPropPredDataset
2032
2033
2034
2035

    ds = data.AsGraphPredDataset(
        DglGraphPropPredDataset("ogbg-molhiv"), split_ratio=None, verbose=True
    )
Mufei Li's avatar
Mufei Li committed
2036
2037
    assert len(ds.train_idx) == 32901
    # force generate new split
2038
2039
2040
2041
2042
    ds = data.AsGraphPredDataset(
        DglGraphPropPredDataset("ogbg-molhiv"),
        split_ratio=[0.6, 0.2, 0.2],
        verbose=True,
    )
Mufei Li's avatar
Mufei Li committed
2043
2044
    assert len(ds.train_idx) == 24676

2045
2046

if __name__ == "__main__":
2047
    test_minigc()
2048
    test_gin()
2049
    test_data_hash()
2050
2051
2052
    test_tudataset_regression()
    test_fraud()
    test_fakenews()
2053
    test_extract_archive()
2054
    test_csvdataset()
2055
2056
2057
    test_add_nodepred_split()
    test_as_nodepred1()
    test_as_nodepred2()
2058
    test_as_nodepred_csvdataset()