test_nn.py 69.6 KB
Newer Older
1
import io
2
3
4
5
6
import pickle
from copy import deepcopy

import backend as F

7
import dgl
8
import dgl.function as fn
9
10
import dgl.nn.pytorch as nn
import networkx as nx
11
import pytest
12
import scipy as sp
LuckyLiuM's avatar
LuckyLiuM committed
13
import torch
14
import torch as th
15
16
17
18
from torch.optim import Adam, SparseAdam
from torch.utils.data import DataLoader
from utils import parametrize_idtype
from utils.graph_cases import (
19
20
21
22
23
    get_cases,
    random_bipartite,
    random_dglgraph,
    random_graph,
)
24

25
26
tmp_buffer = io.BytesIO()

27

28
29
30
31
32
def _AXWb(A, X, W, b):
    X = th.matmul(X, W)
    Y = th.matmul(A, X.view(X.shape[0], -1)).view_as(X)
    return Y + b

33
34

@pytest.mark.parametrize("out_dim", [1, 2])
35
def test_graph_conv0(out_dim):
36
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
37
    ctx = F.ctx()
38
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
39

40
    conv = nn.GraphConv(5, out_dim, norm="none", bias=True)
41
    conv = conv.to(ctx)
42
    print(conv)
43
44
45
46

    # test pickle
    th.save(conv, tmp_buffer)

47
    # test#1: basic
48
    h0 = F.ones((3, 5))
49
    h1 = conv(g, h0)
50
51
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
52
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
53
    # test#2: more-dim
54
    h0 = F.ones((3, 5, 5))
55
    h1 = conv(g, h0)
56
57
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
58
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
59

60
    conv = nn.GraphConv(5, out_dim)
61
    conv = conv.to(ctx)
62
    # test#3: basic
63
    h0 = F.ones((3, 5))
64
    h1 = conv(g, h0)
65
66
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
67
    # test#4: basic
68
    h0 = F.ones((3, 5, 5))
69
    h1 = conv(g, h0)
70
71
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
72

73
    conv = nn.GraphConv(5, out_dim)
74
    conv = conv.to(ctx)
75
    # test#3: basic
76
    h0 = F.ones((3, 5))
77
    h1 = conv(g, h0)
78
79
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
80
    # test#4: basic
81
    h0 = F.ones((3, 5, 5))
82
    h1 = conv(g, h0)
83
84
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
85
86
87
88
89

    # test rest_parameters
    old_weight = deepcopy(conv.weight.data)
    conv.reset_parameters()
    new_weight = conv.weight.data
90
    assert not F.allclose(old_weight, new_weight)
91

92

nv-dlasalle's avatar
nv-dlasalle committed
93
@parametrize_idtype
94
95
96
97
98
99
100
@pytest.mark.parametrize(
    "g", get_cases(["homo", "bipartite"], exclude=["zero-degree", "dglgraph"])
)
@pytest.mark.parametrize("norm", ["none", "both", "right", "left"])
@pytest.mark.parametrize("weight", [True, False])
@pytest.mark.parametrize("bias", [True, False])
@pytest.mark.parametrize("out_dim", [1, 2])
101
def test_graph_conv(idtype, g, norm, weight, bias, out_dim):
102
103
    # Test one tensor input
    g = g.astype(idtype).to(F.ctx())
104
105
106
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(
        F.ctx()
    )
107
    ext_w = F.randn((5, out_dim)).to(F.ctx())
108
109
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
110
111
    h = F.randn((nsrc, 5)).to(F.ctx())
    if weight:
112
        h_out = conv(g, h)
113
    else:
114
        h_out = conv(g, h, weight=ext_w)
115
    assert h_out.shape == (ndst, out_dim)
116

117

nv-dlasalle's avatar
nv-dlasalle committed
118
@parametrize_idtype
119
120
121
122
123
124
125
126
@pytest.mark.parametrize(
    "g",
    get_cases(["has_scalar_e_feature"], exclude=["zero-degree", "dglgraph"]),
)
@pytest.mark.parametrize("norm", ["none", "both", "right"])
@pytest.mark.parametrize("weight", [True, False])
@pytest.mark.parametrize("bias", [True, False])
@pytest.mark.parametrize("out_dim", [1, 2])
127
def test_graph_conv_e_weight(idtype, g, norm, weight, bias, out_dim):
128
    g = g.astype(idtype).to(F.ctx())
129
130
131
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(
        F.ctx()
    )
132
    ext_w = F.randn((5, out_dim)).to(F.ctx())
133
134
135
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
136
    e_w = g.edata["scalar_w"]
137
138
139
140
    if weight:
        h_out = conv(g, h, edge_weight=e_w)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=e_w)
141
    assert h_out.shape == (ndst, out_dim)
142

143

nv-dlasalle's avatar
nv-dlasalle committed
144
@parametrize_idtype
145
146
147
148
149
150
151
152
@pytest.mark.parametrize(
    "g",
    get_cases(["has_scalar_e_feature"], exclude=["zero-degree", "dglgraph"]),
)
@pytest.mark.parametrize("norm", ["none", "both", "right"])
@pytest.mark.parametrize("weight", [True, False])
@pytest.mark.parametrize("bias", [True, False])
@pytest.mark.parametrize("out_dim", [1, 2])
153
def test_graph_conv_e_weight_norm(idtype, g, norm, weight, bias, out_dim):
154
    g = g.astype(idtype).to(F.ctx())
155
156
157
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(
        F.ctx()
    )
158
159
160
161

    # test pickle
    th.save(conv, tmp_buffer)

162
    ext_w = F.randn((5, out_dim)).to(F.ctx())
163
164
165
166
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    edgenorm = nn.EdgeWeightNorm(norm=norm)
167
    norm_weight = edgenorm(g, g.edata["scalar_w"])
168
169
170
171
    if weight:
        h_out = conv(g, h, edge_weight=norm_weight)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=norm_weight)
172
    assert h_out.shape == (ndst, out_dim)
173

174

nv-dlasalle's avatar
nv-dlasalle committed
175
@parametrize_idtype
176
177
178
179
180
181
182
@pytest.mark.parametrize(
    "g", get_cases(["bipartite"], exclude=["zero-degree", "dglgraph"])
)
@pytest.mark.parametrize("norm", ["none", "both", "right"])
@pytest.mark.parametrize("weight", [True, False])
@pytest.mark.parametrize("bias", [True, False])
@pytest.mark.parametrize("out_dim", [1, 2])
183
def test_graph_conv_bi(idtype, g, norm, weight, bias, out_dim):
184
185
    # Test a pair of tensor inputs
    g = g.astype(idtype).to(F.ctx())
186
187
188
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(
        F.ctx()
    )
Mufei Li's avatar
Mufei Li committed
189

190
191
192
    # test pickle
    th.save(conv, tmp_buffer)

193
    ext_w = F.randn((5, out_dim)).to(F.ctx())
194
195
196
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
197
    h_dst = F.randn((ndst, out_dim)).to(F.ctx())
198
199
200
201
    if weight:
        h_out = conv(g, (h, h_dst))
    else:
        h_out = conv(g, (h, h_dst), weight=ext_w)
202
    assert h_out.shape == (ndst, out_dim)
203

204

205
206
207
208
209
210
211
212
213
214
215
216
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = th.matmul(A, X1.view(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = th.matmul(A, X2.view(X2.shape[0], -1))
    X2 = X2 * N
    X = th.cat([X, X1, X2], dim=-1)
    Y = th.matmul(X, W.rot90())

    return Y + b

217
218

@pytest.mark.parametrize("out_dim", [1, 2])
219
def test_tagconv(out_dim):
220
    g = dgl.DGLGraph(nx.path_graph(3))
221
    g = g.to(F.ctx())
222
    ctx = F.ctx()
223
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
224
225
    norm = th.pow(g.in_degrees().float(), -0.5)

226
    conv = nn.TAGConv(5, out_dim, bias=True)
227
    conv = conv.to(ctx)
228
    print(conv)
Mufei Li's avatar
Mufei Li committed
229

230
231
    # test pickle
    th.save(conv, tmp_buffer)
232
233
234

    # test#1: basic
    h0 = F.ones((3, 5))
235
    h1 = conv(g, h0)
236
237
238
239
240
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.dim() - 1)
    norm = th.reshape(norm, shp).to(ctx)

241
242
243
    assert F.allclose(
        h1, _S2AXWb(adj, norm, h0, conv.lin.weight, conv.lin.bias)
    )
244

245
    conv = nn.TAGConv(5, out_dim)
246
    conv = conv.to(ctx)
247

248
249
    # test#2: basic
    h0 = F.ones((3, 5))
250
    h1 = conv(g, h0)
251
    assert h1.shape[-1] == out_dim
252

253
    # test reset_parameters
254
255
256
257
258
    old_weight = deepcopy(conv.lin.weight.data)
    conv.reset_parameters()
    new_weight = conv.lin.weight.data
    assert not F.allclose(old_weight, new_weight)

259

260
def test_set2set():
261
    ctx = F.ctx()
262
    g = dgl.DGLGraph(nx.path_graph(10))
263
    g = g.to(F.ctx())
264

265
    s2s = nn.Set2Set(5, 3, 3)  # hidden size 5, 3 iters, 3 layers
266
    s2s = s2s.to(ctx)
267
268
269
    print(s2s)

    # test#1: basic
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
270
    h0 = F.randn((g.num_nodes(), 5))
271
    h1 = s2s(g, h0)
272
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
273
274

    # test#2: batched graph
275
276
    g1 = dgl.DGLGraph(nx.path_graph(11)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
277
    bg = dgl.batch([g, g1, g2])
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
278
    h0 = F.randn((bg.num_nodes(), 5))
279
    h1 = s2s(bg, h0)
280
281
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.dim() == 2

282

283
def test_glob_att_pool():
284
    ctx = F.ctx()
285
    g = dgl.DGLGraph(nx.path_graph(10))
286
    g = g.to(F.ctx())
287
288

    gap = nn.GlobalAttentionPooling(th.nn.Linear(5, 1), th.nn.Linear(5, 10))
289
    gap = gap.to(ctx)
290
291
    print(gap)

292
293
294
    # test pickle
    th.save(gap, tmp_buffer)

295
    # test#1: basic
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
296
    h0 = F.randn((g.num_nodes(), 5))
297
    h1 = gap(g, h0)
298
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
299
300
301

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
302
    h0 = F.randn((bg.num_nodes(), 5))
303
    h1 = gap(bg, h0)
304
305
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.dim() == 2

306

307
def test_simple_pool():
308
    ctx = F.ctx()
309
    g = dgl.DGLGraph(nx.path_graph(15))
310
    g = g.to(F.ctx())
311
312
313
314

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
315
    sort_pool = nn.SortPooling(10)  # k = 10
316
317
318
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
319
    h0 = F.randn((g.num_nodes(), 5))
320
321
322
323
    sum_pool = sum_pool.to(ctx)
    avg_pool = avg_pool.to(ctx)
    max_pool = max_pool.to(ctx)
    sort_pool = sort_pool.to(ctx)
324
    h1 = sum_pool(g, h0)
325
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
326
    h1 = avg_pool(g, h0)
327
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
328
    h1 = max_pool(g, h0)
329
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
330
    h1 = sort_pool(g, h0)
331
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.dim() == 2
332
333

    # test#2: batched graph
334
    g_ = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
335
    bg = dgl.batch([g, g_, g, g_, g])
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
336
    h0 = F.randn((bg.num_nodes(), 5))
337
    h1 = sum_pool(bg, h0)
338
339
340
341
342
343
344
345
346
347
    truth = th.stack(
        [
            F.sum(h0[:15], 0),
            F.sum(h0[15:20], 0),
            F.sum(h0[20:35], 0),
            F.sum(h0[35:40], 0),
            F.sum(h0[40:55], 0),
        ],
        0,
    )
348
    assert F.allclose(h1, truth)
349

350
    h1 = avg_pool(bg, h0)
351
352
353
354
355
356
357
358
359
360
    truth = th.stack(
        [
            F.mean(h0[:15], 0),
            F.mean(h0[15:20], 0),
            F.mean(h0[20:35], 0),
            F.mean(h0[35:40], 0),
            F.mean(h0[40:55], 0),
        ],
        0,
    )
361
    assert F.allclose(h1, truth)
362

363
    h1 = max_pool(bg, h0)
364
365
366
367
368
369
370
371
372
373
    truth = th.stack(
        [
            F.max(h0[:15], 0),
            F.max(h0[15:20], 0),
            F.max(h0[20:35], 0),
            F.max(h0[35:40], 0),
            F.max(h0[40:55], 0),
        ],
        0,
    )
374
    assert F.allclose(h1, truth)
375

376
    h1 = sort_pool(bg, h0)
377
378
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.dim() == 2

379

380
def test_set_trans():
381
    ctx = F.ctx()
382
383
    g = dgl.DGLGraph(nx.path_graph(15))

384
385
    st_enc_0 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, "sab")
    st_enc_1 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, "isab", 3)
386
    st_dec = nn.SetTransformerDecoder(50, 5, 10, 100, 2, 4)
387
388
389
    st_enc_0 = st_enc_0.to(ctx)
    st_enc_1 = st_enc_1.to(ctx)
    st_dec = st_dec.to(ctx)
390
391
392
    print(st_enc_0, st_enc_1, st_dec)

    # test#1: basic
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
393
    h0 = F.randn((g.num_nodes(), 50))
394
    h1 = st_enc_0(g, h0)
395
    assert h1.shape == h0.shape
396
    h1 = st_enc_1(g, h0)
397
    assert h1.shape == h0.shape
398
    h2 = st_dec(g, h1)
399
    assert h2.shape[0] == 1 and h2.shape[1] == 200 and h2.dim() == 2
400
401
402
403
404

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g, g1, g2])
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
405
    h0 = F.randn((bg.num_nodes(), 50))
406
    h1 = st_enc_0(bg, h0)
407
    assert h1.shape == h0.shape
408
    h1 = st_enc_1(bg, h0)
409
410
    assert h1.shape == h0.shape

411
    h2 = st_dec(bg, h1)
412
413
    assert h2.shape[0] == 3 and h2.shape[1] == 200 and h2.dim() == 2

414

nv-dlasalle's avatar
nv-dlasalle committed
415
@parametrize_idtype
416
@pytest.mark.parametrize("O", [1, 8, 32])
417
def test_rgcn(idtype, O):
Minjie Wang's avatar
Minjie Wang committed
418
419
    ctx = F.ctx()
    etype = []
420
421
    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.1))
    g = g.astype(idtype).to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
422
423
    # 5 etypes
    R = 5
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
424
    for i in range(g.num_edges()):
Minjie Wang's avatar
Minjie Wang committed
425
426
427
428
429
430
        etype.append(i % 5)
    B = 2
    I = 10

    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
431
    norm = th.rand((g.num_edges(), 1)).to(ctx)
432
    sorted_r, idx = th.sort(r)
433
434
435
436
437
    sorted_g = dgl.reorder_graph(
        g,
        edge_permute_algo="custom",
        permute_config={"edges_perm": idx.to(idtype)},
    )
438
    sorted_norm = norm[idx]
Minjie Wang's avatar
Minjie Wang committed
439

440
441
    rgc = nn.RelGraphConv(I, O, R).to(ctx)
    th.save(rgc, tmp_buffer)  # test pickle
Minjie Wang's avatar
Minjie Wang committed
442
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
443
    th.save(rgc_basis, tmp_buffer)  # test pickle
444
445
    if O % B == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
446
        th.save(rgc_bdd, tmp_buffer)  # test pickle
447

448
449
450
451
452
    # basic usage
    h_new = rgc(g, h, r)
    assert h_new.shape == (100, O)
    h_new_basis = rgc_basis(g, h, r)
    assert h_new_basis.shape == (100, O)
453
    if O % B == 0:
454
455
456
457
458
459
460
461
462
463
464
        h_new_bdd = rgc_bdd(g, h, r)
        assert h_new_bdd.shape == (100, O)

    # sorted input
    h_new_sorted = rgc(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new, h_new_sorted, atol=1e-4, rtol=1e-4)
    h_new_basis_sorted = rgc_basis(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new_basis, h_new_basis_sorted, atol=1e-4, rtol=1e-4)
    if O % B == 0:
        h_new_bdd_sorted = rgc_bdd(sorted_g, h, sorted_r, presorted=True)
        assert th.allclose(h_new_bdd, h_new_bdd_sorted, atol=1e-4, rtol=1e-4)
465

466
467
468
    # norm input
    h_new = rgc(g, h, r, norm)
    assert h_new.shape == (100, O)
469
    h_new = rgc_basis(g, h, r, norm)
470
    assert h_new.shape == (100, O)
471
472
    if O % B == 0:
        h_new = rgc_bdd(g, h, r, norm)
473
        assert h_new.shape == (100, O)
474

475

476
@parametrize_idtype
477
@pytest.mark.parametrize("O", [1, 10, 40])
478
479
480
481
482
483
484
def test_rgcn_default_nbasis(idtype, O):
    ctx = F.ctx()
    etype = []
    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.1))
    g = g.astype(idtype).to(F.ctx())
    # 5 etypes
    R = 5
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
485
    for i in range(g.num_edges()):
486
487
488
489
490
        etype.append(i % 5)
    I = 10

    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
491
    norm = th.rand((g.num_edges(), 1)).to(ctx)
492
    sorted_r, idx = th.sort(r)
493
494
495
496
497
    sorted_g = dgl.reorder_graph(
        g,
        edge_permute_algo="custom",
        permute_config={"edges_perm": idx.to(idtype)},
    )
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    sorted_norm = norm[idx]

    rgc = nn.RelGraphConv(I, O, R).to(ctx)
    th.save(rgc, tmp_buffer)  # test pickle
    rgc_basis = nn.RelGraphConv(I, O, R, "basis").to(ctx)
    th.save(rgc_basis, tmp_buffer)  # test pickle
    if O % R == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd").to(ctx)
        th.save(rgc_bdd, tmp_buffer)  # test pickle

    # basic usage
    h_new = rgc(g, h, r)
    assert h_new.shape == (100, O)
    h_new_basis = rgc_basis(g, h, r)
    assert h_new_basis.shape == (100, O)
    if O % R == 0:
        h_new_bdd = rgc_bdd(g, h, r)
        assert h_new_bdd.shape == (100, O)

    # sorted input
    h_new_sorted = rgc(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new, h_new_sorted, atol=1e-4, rtol=1e-4)
    h_new_basis_sorted = rgc_basis(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new_basis, h_new_basis_sorted, atol=1e-4, rtol=1e-4)
    if O % R == 0:
        h_new_bdd_sorted = rgc_bdd(sorted_g, h, sorted_r, presorted=True)
        assert th.allclose(h_new_bdd, h_new_bdd_sorted, atol=1e-4, rtol=1e-4)

    # norm input
    h_new = rgc(g, h, r, norm)
    assert h_new.shape == (100, O)
    h_new = rgc_basis(g, h, r, norm)
    assert h_new.shape == (100, O)
    if O % R == 0:
        h_new = rgc_bdd(g, h, r, norm)
        assert h_new.shape == (100, O)
534

535

nv-dlasalle's avatar
nv-dlasalle committed
536
@parametrize_idtype
537
538
539
540
541
@pytest.mark.parametrize(
    "g", get_cases(["homo", "block-bipartite"], exclude=["zero-degree"])
)
@pytest.mark.parametrize("out_dim", [1, 5])
@pytest.mark.parametrize("num_heads", [1, 4])
542
def test_gat_conv(g, idtype, out_dim, num_heads):
543
    ctx = F.ctx()
544
    g = g.astype(idtype).to(ctx)
545
    gat = nn.GATConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
546
    feat = F.randn((g.number_of_src_nodes(), 5))
547
    gat = gat.to(ctx)
548
    h = gat(g, feat)
549
550
551
552

    # test pickle
    th.save(gat, tmp_buffer)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
553
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
554
    _, a = gat(g, feat, get_attention=True)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
555
    assert a.shape == (g.num_edges(), num_heads, 1)
556

557
558
559
560
561
    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

562

nv-dlasalle's avatar
nv-dlasalle committed
563
@parametrize_idtype
564
565
566
@pytest.mark.parametrize("g", get_cases(["bipartite"], exclude=["zero-degree"]))
@pytest.mark.parametrize("out_dim", [1, 2])
@pytest.mark.parametrize("num_heads", [1, 4])
567
def test_gat_conv_bi(g, idtype, out_dim, num_heads):
568
    ctx = F.ctx()
569
    g = g.astype(idtype).to(ctx)
570
    gat = nn.GATConv(5, out_dim, num_heads)
571
572
573
574
    feat = (
        F.randn((g.number_of_src_nodes(), 5)),
        F.randn((g.number_of_dst_nodes(), 5)),
    )
575
576
    gat = gat.to(ctx)
    h = gat(g, feat)
577
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
578
    _, a = gat(g, feat, get_attention=True)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
579
    assert a.shape == (g.num_edges(), num_heads, 1)
580

581

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
@parametrize_idtype
@pytest.mark.parametrize("g", get_cases(["bipartite"], exclude=["zero-degree"]))
@pytest.mark.parametrize("out_dim", [1, 2])
@pytest.mark.parametrize("num_heads", [1, 4])
def test_gat_conv_edge_weight(g, idtype, out_dim, num_heads):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    gat = nn.GATConv(5, out_dim, num_heads)
    feat = (
        F.randn((g.number_of_src_nodes(), 5)),
        F.randn((g.number_of_dst_nodes(), 5)),
    )
    gat = gat.to(ctx)
    ew = F.randn((g.num_edges(),))
    h = gat(g, feat, edge_weight=ew)
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
    assert a.shape[0] == ew.shape[0]
    assert a.shape == (g.num_edges(), num_heads, 1)


nv-dlasalle's avatar
nv-dlasalle committed
603
@parametrize_idtype
604
605
606
607
608
@pytest.mark.parametrize(
    "g", get_cases(["homo", "block-bipartite"], exclude=["zero-degree"])
)
@pytest.mark.parametrize("out_dim", [1, 5])
@pytest.mark.parametrize("num_heads", [1, 4])
Shaked Brody's avatar
Shaked Brody committed
609
610
611
612
613
614
615
616
617
618
619
620
621
def test_gatv2_conv(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
    feat = F.randn((g.number_of_src_nodes(), 5))
    gat = gat.to(ctx)
    h = gat(g, feat)

    # test pickle
    th.save(gat, tmp_buffer)

    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
622
    assert a.shape == (g.num_edges(), num_heads, 1)
Shaked Brody's avatar
Shaked Brody committed
623
624
625
626
627
628

    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

629

nv-dlasalle's avatar
nv-dlasalle committed
630
@parametrize_idtype
631
632
633
@pytest.mark.parametrize("g", get_cases(["bipartite"], exclude=["zero-degree"]))
@pytest.mark.parametrize("out_dim", [1, 2])
@pytest.mark.parametrize("num_heads", [1, 4])
Shaked Brody's avatar
Shaked Brody committed
634
635
636
637
def test_gatv2_conv_bi(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
638
639
640
641
    feat = (
        F.randn((g.number_of_src_nodes(), 5)),
        F.randn((g.number_of_dst_nodes(), 5)),
    )
Shaked Brody's avatar
Shaked Brody committed
642
643
644
645
    gat = gat.to(ctx)
    h = gat(g, feat)
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
646
    assert a.shape == (g.num_edges(), num_heads, 1)
Shaked Brody's avatar
Shaked Brody committed
647

648

nv-dlasalle's avatar
nv-dlasalle committed
649
@parametrize_idtype
650
651
652
653
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
@pytest.mark.parametrize("out_node_feats", [1, 5])
@pytest.mark.parametrize("out_edge_feats", [1, 5])
@pytest.mark.parametrize("num_heads", [1, 4])
654
655
def test_egat_conv(g, idtype, out_node_feats, out_edge_feats, num_heads):
    g = g.astype(idtype).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
656
    ctx = F.ctx()
657
658
659
660
661
662
663
    egat = nn.EGATConv(
        in_node_feats=10,
        in_edge_feats=5,
        out_node_feats=out_node_feats,
        out_edge_feats=out_edge_feats,
        num_heads=num_heads,
    )
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
664
665
    nfeat = F.randn((g.num_nodes(), 10))
    efeat = F.randn((g.num_edges(), 5))
666
667
    egat = egat.to(ctx)
    h, f = egat(g, nfeat, efeat)
668

669
    th.save(egat, tmp_buffer)
670

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
671
672
    assert h.shape == (g.num_nodes(), num_heads, out_node_feats)
    assert f.shape == (g.num_edges(), num_heads, out_edge_feats)
673
    _, _, attn = egat(g, nfeat, efeat, True)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
674
    assert attn.shape == (g.num_edges(), num_heads, 1)
675

676

677
@parametrize_idtype
678
679
680
681
@pytest.mark.parametrize("g", get_cases(["bipartite"], exclude=["zero-degree"]))
@pytest.mark.parametrize("out_node_feats", [1, 5])
@pytest.mark.parametrize("out_edge_feats", [1, 5])
@pytest.mark.parametrize("num_heads", [1, 4])
682
683
684
def test_egat_conv_bi(g, idtype, out_node_feats, out_edge_feats, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
685
686
687
688
689
690
691
692
693
694
695
    egat = nn.EGATConv(
        in_node_feats=(10, 15),
        in_edge_feats=7,
        out_node_feats=out_node_feats,
        out_edge_feats=out_edge_feats,
        num_heads=num_heads,
    )
    nfeat = (
        F.randn((g.number_of_src_nodes(), 10)),
        F.randn((g.number_of_dst_nodes(), 15)),
    )
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
696
    efeat = F.randn((g.num_edges(), 7))
697
698
    egat = egat.to(ctx)
    h, f = egat(g, nfeat, efeat)
699

Mufei Li's avatar
Mufei Li committed
700
    th.save(egat, tmp_buffer)
701

702
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_node_feats)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
703
    assert f.shape == (g.num_edges(), num_heads, out_edge_feats)
704
    _, _, attn = egat(g, nfeat, efeat, True)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
705
    assert attn.shape == (g.num_edges(), num_heads, 1)
706

707

nv-dlasalle's avatar
nv-dlasalle committed
708
@parametrize_idtype
709
710
@pytest.mark.parametrize("g", get_cases(["homo", "block-bipartite"]))
@pytest.mark.parametrize("aggre_type", ["mean", "pool", "gcn", "lstm"])
711
712
def test_sage_conv(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
713
    sage = nn.SAGEConv(5, 10, aggre_type)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
714
    feat = F.randn((g.number_of_src_nodes(), 5))
715
    sage = sage.to(F.ctx())
716
717
    # test pickle
    th.save(sage, tmp_buffer)
718
719
720
    h = sage(g, feat)
    assert h.shape[-1] == 10

721

nv-dlasalle's avatar
nv-dlasalle committed
722
@parametrize_idtype
723
724
725
@pytest.mark.parametrize("g", get_cases(["bipartite"]))
@pytest.mark.parametrize("aggre_type", ["mean", "pool", "gcn", "lstm"])
@pytest.mark.parametrize("out_dim", [1, 2])
726
def test_sage_conv_bi(idtype, g, aggre_type, out_dim):
727
    g = g.astype(idtype).to(F.ctx())
728
    dst_dim = 5 if aggre_type != "gcn" else 10
729
    sage = nn.SAGEConv((10, dst_dim), out_dim, aggre_type)
730
731
732
733
    feat = (
        F.randn((g.number_of_src_nodes(), 10)),
        F.randn((g.number_of_dst_nodes(), dst_dim)),
    )
734
    sage = sage.to(F.ctx())
735
    h = sage(g, feat)
736
    assert h.shape[-1] == out_dim
737
    assert h.shape[0] == g.number_of_dst_nodes()
738

739

nv-dlasalle's avatar
nv-dlasalle committed
740
@parametrize_idtype
741
@pytest.mark.parametrize("out_dim", [1, 2])
742
def test_sage_conv2(idtype, out_dim):
743
    # TODO: add test for blocks
Mufei Li's avatar
Mufei Li committed
744
    # Test the case for graphs without edges
745
    g = dgl.heterograph({("_U", "_E", "_V"): ([], [])}, {"_U": 5, "_V": 3})
746
747
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
748
    sage = nn.SAGEConv((3, 3), out_dim, "gcn")
Mufei Li's avatar
Mufei Li committed
749
750
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    sage = sage.to(ctx)
751
    h = sage(g, (F.copy_to(feat[0], F.ctx()), F.copy_to(feat[1], F.ctx())))
752
    assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
753
    assert h.shape[0] == 3
754
    for aggre_type in ["mean", "pool", "lstm"]:
755
        sage = nn.SAGEConv((3, 1), out_dim, aggre_type)
Mufei Li's avatar
Mufei Li committed
756
757
758
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        sage = sage.to(ctx)
        h = sage(g, feat)
759
        assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
760
761
        assert h.shape[0] == 3

762

nv-dlasalle's avatar
nv-dlasalle committed
763
@parametrize_idtype
764
765
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
@pytest.mark.parametrize("out_dim", [1, 2])
766
def test_sgc_conv(g, idtype, out_dim):
767
    ctx = F.ctx()
768
    g = g.astype(idtype).to(ctx)
769
    # not cached
770
    sgc = nn.SGConv(5, out_dim, 3)
771
772
773
774

    # test pickle
    th.save(sgc, tmp_buffer)

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
775
    feat = F.randn((g.num_nodes(), 5))
776
    sgc = sgc.to(ctx)
777

778
    h = sgc(g, feat)
779
    assert h.shape[-1] == out_dim
780
781

    # cached
782
    sgc = nn.SGConv(5, out_dim, 3, True)
783
    sgc = sgc.to(ctx)
784
785
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
786
    assert F.allclose(h_0, h_1)
787
    assert h_0.shape[-1] == out_dim
788

789

nv-dlasalle's avatar
nv-dlasalle committed
790
@parametrize_idtype
791
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
792
def test_appnp_conv(g, idtype):
793
    ctx = F.ctx()
794
    g = g.astype(idtype).to(ctx)
795
    appnp = nn.APPNPConv(10, 0.1)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
796
    feat = F.randn((g.num_nodes(), 5))
797
    appnp = appnp.to(ctx)
Mufei Li's avatar
Mufei Li committed
798

799
800
    # test pickle
    th.save(appnp, tmp_buffer)
801

802
    h = appnp(g, feat)
803
804
    assert h.shape[-1] == 5

805

nv-dlasalle's avatar
nv-dlasalle committed
806
@parametrize_idtype
807
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
808
809
810
811
def test_appnp_conv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    appnp = nn.APPNPConv(10, 0.1)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
812
    feat = F.randn((g.num_nodes(), 5))
813
    eweight = F.ones((g.num_edges(),))
814
815
816
817
818
    appnp = appnp.to(ctx)

    h = appnp(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

819

nv-dlasalle's avatar
nv-dlasalle committed
820
@parametrize_idtype
821
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
822
823
@pytest.mark.parametrize("bias", [True, False])
def test_gcn2conv_e_weight(g, idtype, bias):
824
825
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
826
827
828
    gcn2conv = nn.GCN2Conv(
        5, layer=2, alpha=0.5, bias=bias, project_initial_features=True
    )
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
829
    feat = F.randn((g.num_nodes(), 5))
830
    eweight = F.ones((g.num_edges(),))
831
832
833
834
835
836
    gcn2conv = gcn2conv.to(ctx)
    res = feat
    h = gcn2conv(g, res, feat, edge_weight=eweight)
    assert h.shape[-1] == 5


nv-dlasalle's avatar
nv-dlasalle committed
837
@parametrize_idtype
838
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
839
840
841
842
def test_sgconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    sgconv = nn.SGConv(5, 5, 3)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
843
    feat = F.randn((g.num_nodes(), 5))
844
    eweight = F.ones((g.num_edges(),))
845
846
847
848
    sgconv = sgconv.to(ctx)
    h = sgconv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

849

nv-dlasalle's avatar
nv-dlasalle committed
850
@parametrize_idtype
851
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
852
853
854
855
856
def test_tagconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    conv = nn.TAGConv(5, 5, bias=True)
    conv = conv.to(ctx)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
857
    feat = F.randn((g.num_nodes(), 5))
858
    eweight = F.ones((g.num_edges(),))
859
860
861
862
    conv = conv.to(ctx)
    h = conv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

863

nv-dlasalle's avatar
nv-dlasalle committed
864
@parametrize_idtype
865
866
867
868
@pytest.mark.parametrize(
    "g", get_cases(["homo", "block-bipartite"], exclude=["zero-degree"])
)
@pytest.mark.parametrize("aggregator_type", ["mean", "max", "sum"])
869
870
def test_gin_conv(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
871
    ctx = F.ctx()
872
    gin = nn.GINConv(th.nn.Linear(5, 12), aggregator_type)
VoVAllen's avatar
VoVAllen committed
873
    th.save(gin, tmp_buffer)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
874
    feat = F.randn((g.number_of_src_nodes(), 5))
875
876
    gin = gin.to(ctx)
    h = gin(g, feat)
877
878

    # test pickle
VoVAllen's avatar
VoVAllen committed
879
    th.save(gin, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
880

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
881
    assert h.shape == (g.number_of_dst_nodes(), 12)
882

Mufei Li's avatar
Mufei Li committed
883
884
885
886
    gin = nn.GINConv(None, aggregator_type)
    th.save(gin, tmp_buffer)
    gin = gin.to(ctx)
    h = gin(g, feat)
887

888

nv-dlasalle's avatar
nv-dlasalle committed
889
@parametrize_idtype
890
@pytest.mark.parametrize("g", get_cases(["homo", "block-bipartite"]))
Mufei Li's avatar
Mufei Li committed
891
892
893
def test_gine_conv(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
894
    gine = nn.GINEConv(th.nn.Linear(5, 12))
Mufei Li's avatar
Mufei Li committed
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
    th.save(gine, tmp_buffer)
    nfeat = F.randn((g.number_of_src_nodes(), 5))
    efeat = F.randn((g.num_edges(), 5))
    gine = gine.to(ctx)
    h = gine(g, nfeat, efeat)

    # test pickle
    th.save(gine, tmp_buffer)
    assert h.shape == (g.number_of_dst_nodes(), 12)

    gine = nn.GINEConv(None)
    th.save(gine, tmp_buffer)
    gine = gine.to(ctx)
    h = gine(g, nfeat, efeat)

910

nv-dlasalle's avatar
nv-dlasalle committed
911
@parametrize_idtype
912
913
@pytest.mark.parametrize("g", get_cases(["bipartite"], exclude=["zero-degree"]))
@pytest.mark.parametrize("aggregator_type", ["mean", "max", "sum"])
914
915
916
def test_gin_conv_bi(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
917
918
919
920
    gin = nn.GINConv(th.nn.Linear(5, 12), aggregator_type)
    feat = (
        F.randn((g.number_of_src_nodes(), 5)),
        F.randn((g.number_of_dst_nodes(), 5)),
921
922
923
    )
    gin = gin.to(ctx)
    h = gin(g, feat)
924
    assert h.shape == (g.number_of_dst_nodes(), 12)
925

926

nv-dlasalle's avatar
nv-dlasalle committed
927
@parametrize_idtype
928
929
930
@pytest.mark.parametrize(
    "g", get_cases(["homo", "block-bipartite"], exclude=["zero-degree"])
)
931
932
def test_agnn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
933
934
    ctx = F.ctx()
    agnn = nn.AGNNConv(1)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
935
    feat = F.randn((g.number_of_src_nodes(), 5))
936
    agnn = agnn.to(ctx)
937
    h = agnn(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
938
    assert h.shape == (g.number_of_dst_nodes(), 5)
939

940

nv-dlasalle's avatar
nv-dlasalle committed
941
@parametrize_idtype
942
@pytest.mark.parametrize("g", get_cases(["bipartite"], exclude=["zero-degree"]))
943
944
945
def test_agnn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
946
    agnn = nn.AGNNConv(1)
947
948
949
950
    feat = (
        F.randn((g.number_of_src_nodes(), 5)),
        F.randn((g.number_of_dst_nodes(), 5)),
    )
951
952
    agnn = agnn.to(ctx)
    h = agnn(g, feat)
953
    assert h.shape == (g.number_of_dst_nodes(), 5)
954

955

nv-dlasalle's avatar
nv-dlasalle committed
956
@parametrize_idtype
957
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
958
def test_gated_graph_conv(g, idtype):
959
    ctx = F.ctx()
960
    g = g.astype(idtype).to(ctx)
961
    ggconv = nn.GatedGraphConv(5, 10, 5, 3)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
962
963
    etypes = th.arange(g.num_edges()) % 3
    feat = F.randn((g.num_nodes(), 5))
964
965
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)
966

967
    h = ggconv(g, feat, etypes)
968
969
970
    # current we only do shape check
    assert h.shape[-1] == 10

971

nv-dlasalle's avatar
nv-dlasalle committed
972
@parametrize_idtype
973
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
974
975
976
977
def test_gated_graph_conv_one_etype(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    ggconv = nn.GatedGraphConv(5, 10, 5, 1)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
978
979
    etypes = th.zeros(g.num_edges())
    feat = F.randn((g.num_nodes(), 5))
980
981
982
983
984
985
986
987
988
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)

    h = ggconv(g, feat, etypes)
    h2 = ggconv(g, feat)
    # current we only do shape check
    assert F.allclose(h, h2)
    assert h.shape[-1] == 10

989

nv-dlasalle's avatar
nv-dlasalle committed
990
@parametrize_idtype
991
992
993
@pytest.mark.parametrize(
    "g", get_cases(["homo", "block-bipartite"], exclude=["zero-degree"])
)
994
995
def test_nn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
996
997
    ctx = F.ctx()
    edge_func = th.nn.Linear(4, 5 * 10)
998
    nnconv = nn.NNConv(5, 10, edge_func, "mean")
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
999
    feat = F.randn((g.number_of_src_nodes(), 5))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1000
    efeat = F.randn((g.num_edges(), 4))
1001
1002
1003
1004
1005
    nnconv = nnconv.to(ctx)
    h = nnconv(g, feat, efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

1006

nv-dlasalle's avatar
nv-dlasalle committed
1007
@parametrize_idtype
1008
@pytest.mark.parametrize("g", get_cases(["bipartite"], exclude=["zero-degree"]))
1009
1010
1011
def test_nn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
1012
    edge_func = th.nn.Linear(4, 5 * 10)
1013
    nnconv = nn.NNConv((5, 2), 10, edge_func, "mean")
1014
1015
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1016
    efeat = F.randn((g.num_edges(), 4))
1017
1018
1019
1020
1021
    nnconv = nnconv.to(ctx)
    h = nnconv(g, (feat, feat_dst), efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

1022

nv-dlasalle's avatar
nv-dlasalle committed
1023
@parametrize_idtype
1024
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
1025
1026
def test_gmm_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
1027
    ctx = F.ctx()
1028
    gmmconv = nn.GMMConv(5, 10, 3, 4, "mean")
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1029
1030
    feat = F.randn((g.num_nodes(), 5))
    pseudo = F.randn((g.num_edges(), 3))
1031
    gmmconv = gmmconv.to(ctx)
1032
    h = gmmconv(g, feat, pseudo)
1033
1034
1035
    # currently we only do shape check
    assert h.shape[-1] == 10

1036

nv-dlasalle's avatar
nv-dlasalle committed
1037
@parametrize_idtype
1038
1039
1040
@pytest.mark.parametrize(
    "g", get_cases(["bipartite", "block-bipartite"], exclude=["zero-degree"])
)
1041
1042
1043
def test_gmm_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
1044
    gmmconv = nn.GMMConv((5, 2), 10, 3, 4, "mean")
1045
1046
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1047
    pseudo = F.randn((g.num_edges(), 3))
1048
1049
1050
1051
1052
    gmmconv = gmmconv.to(ctx)
    h = gmmconv(g, (feat, feat_dst), pseudo)
    # currently we only do shape check
    assert h.shape[-1] == 10

1053

nv-dlasalle's avatar
nv-dlasalle committed
1054
@parametrize_idtype
1055
1056
1057
1058
1059
@pytest.mark.parametrize("norm_type", ["both", "right", "none"])
@pytest.mark.parametrize(
    "g", get_cases(["homo", "bipartite"], exclude=["zero-degree"])
)
@pytest.mark.parametrize("out_dim", [1, 2])
1060
def test_dense_graph_conv(norm_type, g, idtype, out_dim):
1061
    g = g.astype(idtype).to(F.ctx())
1062
    ctx = F.ctx()
1063
    # TODO(minjie): enable the following option after #1385
1064
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
1065
1066
    conv = nn.GraphConv(5, out_dim, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, out_dim, norm=norm_type, bias=True)
1067
1068
    dense_conv.weight.data = conv.weight.data
    dense_conv.bias.data = conv.bias.data
1069
    feat = F.randn((g.number_of_src_nodes(), 5))
1070
1071
    conv = conv.to(ctx)
    dense_conv = dense_conv.to(ctx)
1072
1073
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
1074
1075
    assert F.allclose(out_conv, out_dense_conv)

1076

nv-dlasalle's avatar
nv-dlasalle committed
1077
@parametrize_idtype
1078
1079
@pytest.mark.parametrize("g", get_cases(["homo", "bipartite"]))
@pytest.mark.parametrize("out_dim", [1, 2])
1080
def test_dense_sage_conv(g, idtype, out_dim):
1081
    g = g.astype(idtype).to(F.ctx())
1082
    ctx = F.ctx()
1083
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
1084
    sage = nn.SAGEConv(5, out_dim, "gcn")
1085
    dense_sage = nn.DenseSAGEConv(5, out_dim)
1086
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
1087
    dense_sage.fc.bias.data = sage.bias.data
1088
1089
1090
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
1091
            F.randn((g.number_of_dst_nodes(), 5)),
1092
1093
        )
    else:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1094
        feat = F.randn((g.num_nodes(), 5))
1095
1096
    sage = sage.to(ctx)
    dense_sage = dense_sage.to(ctx)
1097
1098
    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
1099
1100
    assert F.allclose(out_sage, out_dense_sage), g

1101

nv-dlasalle's avatar
nv-dlasalle committed
1102
@parametrize_idtype
1103
1104
1105
1106
@pytest.mark.parametrize(
    "g", get_cases(["homo", "block-bipartite"], exclude=["zero-degree"])
)
@pytest.mark.parametrize("out_dim", [1, 2])
1107
def test_edge_conv(g, idtype, out_dim):
1108
    g = g.astype(idtype).to(F.ctx())
1109
    ctx = F.ctx()
1110
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
1111
    print(edge_conv)
1112
1113
1114

    # test pickle
    th.save(edge_conv, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
1115

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1116
    h0 = F.randn((g.number_of_src_nodes(), 5))
1117
    h1 = edge_conv(g, h0)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1118
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
1119

1120

nv-dlasalle's avatar
nv-dlasalle committed
1121
@parametrize_idtype
1122
1123
@pytest.mark.parametrize("g", get_cases(["bipartite"], exclude=["zero-degree"]))
@pytest.mark.parametrize("out_dim", [1, 2])
1124
def test_edge_conv_bi(g, idtype, out_dim):
1125
1126
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
1127
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
1128
    print(edge_conv)
1129
    h0 = F.randn((g.number_of_src_nodes(), 5))
1130
1131
    x0 = F.randn((g.number_of_dst_nodes(), 5))
    h1 = edge_conv(g, (h0, x0))
1132
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
Mufei Li's avatar
Mufei Li committed
1133

1134

nv-dlasalle's avatar
nv-dlasalle committed
1135
@parametrize_idtype
1136
1137
1138
1139
1140
@pytest.mark.parametrize(
    "g", get_cases(["homo", "block-bipartite"], exclude=["zero-degree"])
)
@pytest.mark.parametrize("out_dim", [1, 2])
@pytest.mark.parametrize("num_heads", [1, 4])
1141
def test_dotgat_conv(g, idtype, out_dim, num_heads):
1142
1143
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
1144
    dotgat = nn.DotGatConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1145
    feat = F.randn((g.number_of_src_nodes(), 5))
1146
    dotgat = dotgat.to(ctx)
Mufei Li's avatar
Mufei Li committed
1147

1148
1149
    # test pickle
    th.save(dotgat, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
1150

1151
    h = dotgat(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1152
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
1153
    _, a = dotgat(g, feat, get_attention=True)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1154
    assert a.shape == (g.num_edges(), num_heads, 1)
1155

1156

nv-dlasalle's avatar
nv-dlasalle committed
1157
@parametrize_idtype
1158
1159
1160
@pytest.mark.parametrize("g", get_cases(["bipartite"], exclude=["zero-degree"]))
@pytest.mark.parametrize("out_dim", [1, 2])
@pytest.mark.parametrize("num_heads", [1, 4])
1161
def test_dotgat_conv_bi(g, idtype, out_dim, num_heads):
1162
1163
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
1164
    dotgat = nn.DotGatConv((5, 5), out_dim, num_heads)
1165
1166
1167
1168
    feat = (
        F.randn((g.number_of_src_nodes(), 5)),
        F.randn((g.number_of_dst_nodes(), 5)),
    )
1169
1170
    dotgat = dotgat.to(ctx)
    h = dotgat(g, feat)
1171
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
1172
    _, a = dotgat(g, feat, get_attention=True)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1173
    assert a.shape == (g.num_edges(), num_heads, 1)
1174

1175
1176

@pytest.mark.parametrize("out_dim", [1, 2])
1177
def test_dense_cheb_conv(out_dim):
1178
1179
1180
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
1181
        g = g.to(F.ctx())
1182
        adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
1183
1184
        cheb = nn.ChebConv(5, out_dim, k, None)
        dense_cheb = nn.DenseChebConv(5, out_dim, k)
1185
        # for i in range(len(cheb.fc)):
Axel Nilsson's avatar
Axel Nilsson committed
1186
        #    dense_cheb.W.data[i] = cheb.fc[i].weight.data.t()
1187
1188
1189
        dense_cheb.W.data = cheb.linear.weight.data.transpose(-1, -2).view(
            k, 5, out_dim
        )
Axel Nilsson's avatar
Axel Nilsson committed
1190
1191
        if cheb.linear.bias is not None:
            dense_cheb.bias.data = cheb.linear.bias.data
1192
        feat = F.randn((100, 5))
1193
1194
        cheb = cheb.to(ctx)
        dense_cheb = dense_cheb.to(ctx)
1195
1196
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
Axel Nilsson's avatar
Axel Nilsson committed
1197
        print(k, out_cheb, out_dense_cheb)
1198
1199
        assert F.allclose(out_cheb, out_dense_cheb)

1200

1201
1202
def test_sequential():
    ctx = F.ctx()
1203

1204
1205
1206
1207
1208
1209
1210
    # Test single graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
1211
1212
1213
1214
1215
            graph.ndata["h"] = n_feat
            graph.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
            n_feat += graph.ndata["h"]
            graph.apply_edges(fn.u_add_v("h", "h", "e"))
            e_feat += graph.edata["e"]
1216
1217
1218
1219
1220
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
1221
    g = g.to(F.ctx())
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    net = net.to(ctx)
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # Test multiple graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat):
            graph = graph.local_var()
1237
1238
1239
            graph.ndata["h"] = n_feat
            graph.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
            n_feat += graph.ndata["h"]
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1240
            return n_feat.view(graph.num_nodes() // 2, 2, -1).sum(1)
1241

1242
1243
1244
    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2)).to(F.ctx())
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8)).to(F.ctx())
1245
1246
1247
1248
1249
1250
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    net = net.to(ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

1251

nv-dlasalle's avatar
nv-dlasalle committed
1252
@parametrize_idtype
1253
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
1254
1255
def test_atomic_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
1256
1257
1258
1259
1260
1261
    aconv = nn.AtomicConv(
        interaction_cutoffs=F.tensor([12.0, 12.0]),
        rbf_kernel_means=F.tensor([0.0, 2.0]),
        rbf_kernel_scaling=F.tensor([4.0, 4.0]),
        features_to_use=F.tensor([6.0, 8.0]),
    )
1262
1263
1264
1265
1266

    ctx = F.ctx()
    if F.gpu_ctx():
        aconv = aconv.to(ctx)

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1267
1268
    feat = F.randn((g.num_nodes(), 1))
    dist = F.randn((g.num_edges(), 1))
1269
1270

    h = aconv(g, feat, dist)
1271

1272
1273
1274
    # current we only do shape check
    assert h.shape[-1] == 4

1275

nv-dlasalle's avatar
nv-dlasalle committed
1276
@parametrize_idtype
1277
1278
1279
1280
@pytest.mark.parametrize(
    "g", get_cases(["homo", "bipartite"], exclude=["zero-degree"])
)
@pytest.mark.parametrize("out_dim", [1, 3])
1281
def test_cf_conv(g, idtype, out_dim):
1282
    g = g.astype(idtype).to(F.ctx())
1283
1284
1285
    cfconv = nn.CFConv(
        node_in_feats=2, edge_in_feats=3, hidden_feats=2, out_feats=out_dim
    )
1286
1287
1288
1289
1290

    ctx = F.ctx()
    if F.gpu_ctx():
        cfconv = cfconv.to(ctx)

1291
    src_feats = F.randn((g.number_of_src_nodes(), 2))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
1292
    edge_feats = F.randn((g.num_edges(), 3))
1293
1294
1295
1296
1297
1298
1299
    h = cfconv(g, src_feats, edge_feats)
    # current we only do shape check
    assert h.shape[-1] == out_dim

    # case for bipartite graphs
    dst_feats = F.randn((g.number_of_dst_nodes(), 3))
    h = cfconv(g, (src_feats, dst_feats), edge_feats)
1300
    # current we only do shape check
1301
    assert h.shape[-1] == out_dim
1302

1303

1304
1305
1306
1307
1308
1309
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

1310

nv-dlasalle's avatar
nv-dlasalle committed
1311
@parametrize_idtype
1312
1313
@pytest.mark.parametrize("agg", ["sum", "max", "min", "mean", "stack", myagg])
@pytest.mark.parametrize("canonical_keys", [False, True])
1314
def test_hetero_conv(agg, idtype, canonical_keys):
1315
1316
1317
1318
1319
1320
1321
1322
1323
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 0, 2, 1], [1, 2, 1, 3]),
            ("user", "plays", "game"): ([0, 0, 0, 1, 2], [0, 2, 3, 0, 2]),
            ("store", "sells", "game"): ([0, 0, 1, 1], [0, 3, 1, 2]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
1324
    if not canonical_keys:
1325
1326
1327
1328
1329
1330
1331
1332
        conv = nn.HeteroGraphConv(
            {
                "follows": nn.GraphConv(2, 3, allow_zero_in_degree=True),
                "plays": nn.GraphConv(2, 4, allow_zero_in_degree=True),
                "sells": nn.GraphConv(3, 4, allow_zero_in_degree=True),
            },
            agg,
        )
1333
    else:
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
        conv = nn.HeteroGraphConv(
            {
                ("user", "follows", "user"): nn.GraphConv(
                    2, 3, allow_zero_in_degree=True
                ),
                ("user", "plays", "game"): nn.GraphConv(
                    2, 4, allow_zero_in_degree=True
                ),
                ("store", "sells", "game"): nn.GraphConv(
                    3, 4, allow_zero_in_degree=True
                ),
            },
            agg,
        )
1348

1349
    conv = conv.to(F.ctx())
1350
1351
1352
1353

    # test pickle
    th.save(conv, tmp_buffer)

1354
1355
1356
1357
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))

1358
1359
1360
1361
1362
    h = conv(g, {"user": uf, "game": gf, "store": sf})
    assert set(h.keys()) == {"user", "game"}
    if agg != "stack":
        assert h["user"].shape == (4, 3)
        assert h["game"].shape == (4, 4)
1363
    else:
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
        assert h["user"].shape == (4, 1, 3)
        assert h["game"].shape == (4, 2, 4)

    block = dgl.to_block(
        g.to(F.cpu()), {"user": [0, 1, 2, 3], "game": [0, 1, 2, 3], "store": []}
    ).to(F.ctx())
    h = conv(
        block,
        (
            {"user": uf, "game": gf, "store": sf},
            {"user": uf, "game": gf, "store": sf[0:0]},
        ),
    )
    assert set(h.keys()) == {"user", "game"}
    if agg != "stack":
        assert h["user"].shape == (4, 3)
        assert h["game"].shape == (4, 4)
1381
    else:
1382
1383
1384
1385
1386
1387
1388
1389
        assert h["user"].shape == (4, 1, 3)
        assert h["game"].shape == (4, 2, 4)

    h = conv(block, {"user": uf, "game": gf, "store": sf})
    assert set(h.keys()) == {"user", "game"}
    if agg != "stack":
        assert h["user"].shape == (4, 3)
        assert h["game"].shape == (4, 4)
1390
    else:
1391
1392
        assert h["user"].shape == (4, 1, 3)
        assert h["game"].shape == (4, 2, 4)
1393
1394
1395
1396
1397
1398
1399
1400
1401

    # test with mod args
    class MyMod(th.nn.Module):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
1402

1403
1404
1405
1406
1407
1408
        def forward(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return th.zeros((g.number_of_dst_nodes(), self.s2))
1409

1410
1411
1412
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
1413
1414
1415
    conv = nn.HeteroGraphConv(
        {"follows": mod1, "plays": mod2, "sells": mod3}, agg
    )
1416
    conv = conv.to(F.ctx())
1417
1418
1419
1420
1421
1422
1423
1424
    mod_args = {"follows": (1,), "plays": (1,)}
    mod_kwargs = {"sells": {"arg2": "abc"}}
    h = conv(
        g,
        {"user": uf, "game": gf, "store": sf},
        mod_args=mod_args,
        mod_kwargs=mod_kwargs,
    )
1425
1426
1427
1428
1429
1430
1431
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

1432
    # conv on graph without any edges
1433
    for etype in g.etypes:
1434
        g = dgl.remove_edges(g, g.edges(form="eid", etype=etype), etype=etype)
1435
    assert g.num_edges() == 0
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
    h = conv(g, {"user": uf, "game": gf, "store": sf})
    assert set(h.keys()) == {"user", "game"}

    block = dgl.to_block(
        g.to(F.cpu()), {"user": [0, 1, 2, 3], "game": [0, 1, 2, 3], "store": []}
    ).to(F.ctx())
    h = conv(
        block,
        (
            {"user": uf, "game": gf, "store": sf},
            {"user": uf, "game": gf, "store": sf[0:0]},
        ),
    )
    assert set(h.keys()) == {"user", "game"}
1450
1451


1452
@pytest.mark.parametrize("out_dim", [1, 2, 100])
1453
1454
def test_hetero_linear(out_dim):
    in_feats = {
1455
1456
        "user": F.randn((2, 1)),
        ("user", "follows", "user"): F.randn((3, 2)),
1457
1458
    }

1459
1460
1461
    layer = nn.HeteroLinear(
        {"user": 1, ("user", "follows", "user"): 2}, out_dim
    )
1462
1463
    layer = layer.to(F.ctx())
    out_feats = layer(in_feats)
1464
1465
1466
    assert out_feats["user"].shape == (2, out_dim)
    assert out_feats[("user", "follows", "user")].shape == (3, out_dim)

1467

1468
@pytest.mark.parametrize("out_dim", [1, 2, 100])
1469
def test_hetero_embedding(out_dim):
1470
1471
1472
    layer = nn.HeteroEmbedding(
        {"user": 2, ("user", "follows", "user"): 3}, out_dim
    )
1473
1474
1475
    layer = layer.to(F.ctx())

    embeds = layer.weight
1476
1477
    assert embeds["user"].shape == (2, out_dim)
    assert embeds[("user", "follows", "user")].shape == (3, out_dim)
1478

YJ-Zhao's avatar
YJ-Zhao committed
1479
1480
    layer.reset_parameters()
    embeds = layer.weight
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
    assert embeds["user"].shape == (2, out_dim)
    assert embeds[("user", "follows", "user")].shape == (3, out_dim)

    embeds = layer(
        {
            "user": F.tensor([0], dtype=F.int64),
            ("user", "follows", "user"): F.tensor([0, 2], dtype=F.int64),
        }
    )
    assert embeds["user"].shape == (1, out_dim)
    assert embeds[("user", "follows", "user")].shape == (2, out_dim)
YJ-Zhao's avatar
YJ-Zhao committed
1492

1493

nv-dlasalle's avatar
nv-dlasalle committed
1494
@parametrize_idtype
1495
1496
@pytest.mark.parametrize("g", get_cases(["homo"], exclude=["zero-degree"]))
@pytest.mark.parametrize("out_dim", [1, 2])
Mufei Li's avatar
Mufei Li committed
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
def test_gnnexplainer(g, idtype, out_dim):
    g = g.astype(idtype).to(F.ctx())
    feat = F.randn((g.num_nodes(), 5))

    class Model(th.nn.Module):
        def __init__(self, in_feats, out_feats, graph=False):
            super(Model, self).__init__()
            self.linear = th.nn.Linear(in_feats, out_feats)
            if graph:
                self.pool = nn.AvgPooling()
            else:
                self.pool = None

        def forward(self, graph, feat, eweight=None):
            with graph.local_scope():
                feat = self.linear(feat)
1513
                graph.ndata["h"] = feat
Mufei Li's avatar
Mufei Li committed
1514
                if eweight is None:
1515
                    graph.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
Mufei Li's avatar
Mufei Li committed
1516
                else:
1517
1518
1519
1520
                    graph.edata["w"] = eweight
                    graph.update_all(
                        fn.u_mul_e("h", "w", "m"), fn.sum("m", "h")
                    )
Mufei Li's avatar
Mufei Li committed
1521
1522

                if self.pool:
1523
                    return self.pool(graph, graph.ndata["h"])
Mufei Li's avatar
Mufei Li committed
1524
                else:
1525
                    return graph.ndata["h"]
Mufei Li's avatar
Mufei Li committed
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

    # Explain node prediction
    model = Model(5, out_dim)
    model = model.to(F.ctx())
    explainer = nn.GNNExplainer(model, num_hops=1)
    new_center, sg, feat_mask, edge_mask = explainer.explain_node(0, g, feat)

    # Explain graph prediction
    model = Model(5, out_dim, graph=True)
    model = model.to(F.ctx())
    explainer = nn.GNNExplainer(model, num_hops=1)
    feat_mask, edge_mask = explainer.explain_graph(g, feat)

1539
1540
1541
1542
1543

@pytest.mark.parametrize("g", get_cases(["hetero"], exclude=["zero-degree"]))
@pytest.mark.parametrize("idtype", [F.int64])
@pytest.mark.parametrize("input_dim", [5])
@pytest.mark.parametrize("output_dim", [1, 2])
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
def test_heterognnexplainer(g, idtype, input_dim, output_dim):
    g = g.astype(idtype).to(F.ctx())
    device = g.device

    # add self-loop and reverse edges
    transform1 = dgl.transforms.AddSelfLoop(new_etypes=True)
    g = transform1(g)
    transform2 = dgl.transforms.AddReverse(copy_edata=True)
    g = transform2(g)

1554
1555
1556
1557
    feat = {
        ntype: th.zeros((g.num_nodes(ntype), input_dim), device=device)
        for ntype in g.ntypes
    }
1558
1559
1560
1561

    class Model(th.nn.Module):
        def __init__(self, in_dim, num_classes, canonical_etypes, graph=False):
            super(Model, self).__init__()
1562
1563
1564
1565
1566
1567
1568
            self.graph = graph
            self.etype_weights = th.nn.ModuleDict(
                {
                    "_".join(c_etype): th.nn.Linear(in_dim, num_classes)
                    for c_etype in canonical_etypes
                }
            )
1569
1570
1571
1572
1573
1574

        def forward(self, graph, feat, eweight=None):
            with graph.local_scope():
                c_etype_func_dict = {}
                for c_etype in graph.canonical_etypes:
                    src_type, etype, dst_type = c_etype
1575
1576
                    wh = self.etype_weights["_".join(c_etype)](feat[src_type])
                    graph.nodes[src_type].data[f"h_{c_etype}"] = wh
1577
                    if eweight is None:
1578
1579
1580
1581
                        c_etype_func_dict[c_etype] = (
                            fn.copy_u(f"h_{c_etype}", "m"),
                            fn.mean("m", "h"),
                        )
1582
                    else:
1583
                        graph.edges[c_etype].data["w"] = eweight[c_etype]
1584
                        c_etype_func_dict[c_etype] = (
1585
1586
1587
1588
                            fn.u_mul_e(f"h_{c_etype}", "w", "m"),
                            fn.mean("m", "h"),
                        )
                graph.multi_update_all(c_etype_func_dict, "sum")
1589
1590
1591
1592
                if self.graph:
                    hg = 0
                    for ntype in graph.ntypes:
                        if graph.num_nodes(ntype):
1593
                            hg = hg + dgl.mean_nodes(graph, "h", ntype=ntype)
1594
1595
1596

                    return hg
                else:
1597
                    return graph.ndata["h"]
1598
1599
1600
1601
1602
1603

    # Explain node prediction
    model = Model(input_dim, output_dim, g.canonical_etypes)
    model = model.to(F.ctx())
    ntype = g.ntypes[0]
    explainer = nn.explain.HeteroGNNExplainer(model, num_hops=1)
1604
1605
1606
    new_center, sg, feat_mask, edge_mask = explainer.explain_node(
        ntype, 0, g, feat
    )
1607
1608
1609
1610
1611
1612
1613
1614

    # Explain graph prediction
    model = Model(input_dim, output_dim, g.canonical_etypes, graph=True)
    model = model.to(F.ctx())
    explainer = nn.explain.HeteroGNNExplainer(model, num_hops=1)
    feat_mask, edge_mask = explainer.explain_graph(g, feat)


1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
@parametrize_idtype
@pytest.mark.parametrize(
    "g",
    get_cases(
        ["homo"],
        exclude=[
            "zero-degree",
            "homo-zero-degree",
            "has_feature",
            "has_scalar_e_feature",
            "row_sorted",
            "col_sorted",
            "batched",
        ],
    ),
)
@pytest.mark.parametrize("n_classes", [2])
def test_subgraphx(g, idtype, n_classes):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    feat = F.randn((g.num_nodes(), 5))

    class Model(th.nn.Module):
        def __init__(self, in_dim, n_classes):
            super().__init__()
            self.conv = nn.GraphConv(in_dim, n_classes)
            self.pool = nn.AvgPooling()

        def forward(self, g, h):
            h = th.nn.functional.relu(self.conv(g, h))
            return self.pool(g, h)

    model = Model(feat.shape[1], n_classes)
    model = model.to(ctx)
    explainer = nn.SubgraphX(
        model, num_hops=1, shapley_steps=20, num_rollouts=5, coef=2.0
    )
    explainer.explain_graph(g, feat, target_class=0)


Mufei Li's avatar
Mufei Li committed
1655
1656
1657
1658
1659
1660
def test_jumping_knowledge():
    ctx = F.ctx()
    num_layers = 2
    num_nodes = 3
    num_feats = 4

1661
1662
1663
    feat_list = [
        th.randn((num_nodes, num_feats)).to(ctx) for _ in range(num_layers)
    ]
Mufei Li's avatar
Mufei Li committed
1664

1665
    model = nn.JumpingKnowledge("cat").to(ctx)
Mufei Li's avatar
Mufei Li committed
1666
1667
1668
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_layers * num_feats)

1669
    model = nn.JumpingKnowledge("max").to(ctx)
Mufei Li's avatar
Mufei Li committed
1670
1671
1672
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_feats)

1673
    model = nn.JumpingKnowledge("lstm", num_feats, num_layers).to(ctx)
Mufei Li's avatar
Mufei Li committed
1674
1675
1676
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_feats)

1677
1678

@pytest.mark.parametrize("op", ["dot", "cos", "ele", "cat"])
Mufei Li's avatar
Mufei Li committed
1679
1680
1681
1682
1683
1684
1685
1686
1687
def test_edge_predictor(op):
    ctx = F.ctx()
    num_pairs = 3
    in_feats = 4
    out_feats = 5
    h_src = th.randn((num_pairs, in_feats)).to(ctx)
    h_dst = th.randn((num_pairs, in_feats)).to(ctx)

    pred = nn.EdgePredictor(op)
1688
    if op in ["dot", "cos"]:
Mufei Li's avatar
Mufei Li committed
1689
        assert pred(h_src, h_dst).shape == (num_pairs, 1)
1690
    elif op == "ele":
Mufei Li's avatar
Mufei Li committed
1691
1692
1693
1694
1695
1696
        assert pred(h_src, h_dst).shape == (num_pairs, in_feats)
    else:
        assert pred(h_src, h_dst).shape == (num_pairs, 2 * in_feats)
    pred = nn.EdgePredictor(op, in_feats, out_feats, bias=True).to(ctx)
    assert pred(h_src, h_dst).shape == (num_pairs, out_feats)

Mufei Li's avatar
Mufei Li committed
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

def test_ke_score_funcs():
    ctx = F.ctx()
    num_edges = 30
    num_rels = 3
    nfeats = 4

    h_src = th.randn((num_edges, nfeats)).to(ctx)
    h_dst = th.randn((num_edges, nfeats)).to(ctx)
    rels = th.randint(low=0, high=num_rels, size=(num_edges,)).to(ctx)

    score_func = nn.TransE(num_rels=num_rels, feats=nfeats).to(ctx)
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)

1712
1713
1714
    score_func = nn.TransR(
        num_rels=num_rels, rfeats=nfeats - 1, nfeats=nfeats
    ).to(ctx)
Mufei Li's avatar
Mufei Li committed
1715
1716
1717
1718
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)


1719
def test_twirls():
1720
    g = dgl.graph(([0, 1, 2, 3, 2, 5], [1, 2, 3, 4, 0, 3]))
1721
    feat = th.ones(6, 10)
1722
1723
1724
1725
    conv = nn.TWIRLSConv(10, 2, 128, prop_step=64)
    res = conv(g, feat)
    assert res.size() == (6, 2)

1726

1727
1728
1729
1730
@pytest.mark.parametrize("feat_size", [4, 32])
@pytest.mark.parametrize(
    "regularizer,num_bases", [(None, None), ("basis", 4), ("bdd", 4)]
)
1731
1732
1733
def test_typed_linear(feat_size, regularizer, num_bases):
    dev = F.ctx()
    num_types = 5
1734
1735
1736
1737
1738
1739
1740
    lin = nn.TypedLinear(
        feat_size,
        feat_size * 2,
        5,
        regularizer=regularizer,
        num_bases=num_bases,
    ).to(dev)
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
    print(lin)
    x = th.randn(100, feat_size).to(dev)
    x_type = th.randint(0, 5, (100,)).to(dev)
    x_type_sorted, idx = th.sort(x_type)
    _, rev_idx = th.sort(idx)
    x_sorted = x[idx]

    # test unsorted
    y = lin(x, x_type)
    assert y.shape == (100, feat_size * 2)
    # test sorted
    y_sorted = lin(x_sorted, x_type_sorted, sorted_by_type=True)
    assert y_sorted.shape == (100, feat_size * 2)

    assert th.allclose(y, y_sorted[rev_idx], atol=1e-4, rtol=1e-4)
1756

1757

nv-dlasalle's avatar
nv-dlasalle committed
1758
@parametrize_idtype
1759
1760
@pytest.mark.parametrize("in_size", [4])
@pytest.mark.parametrize("num_heads", [1])
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
def test_hgt(idtype, in_size, num_heads):
    dev = F.ctx()
    num_etypes = 5
    num_ntypes = 2
    head_size = in_size // num_heads

    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.01))
    g = g.astype(idtype).to(dev)
    etype = th.tensor([i % num_etypes for i in range(g.num_edges())]).to(dev)
    ntype = th.tensor([i % num_ntypes for i in range(g.num_nodes())]).to(dev)
    x = th.randn(g.num_nodes(), in_size).to(dev)
1772

1773
1774
1775
    m = nn.HGTConv(in_size, head_size, num_heads, num_ntypes, num_etypes).to(
        dev
    )
1776
1777
1778
1779
1780
1781
1782

    y = m(g, x, ntype, etype)
    assert y.shape == (g.num_nodes(), head_size * num_heads)
    # presorted
    sorted_ntype, idx_nt = th.sort(ntype)
    sorted_etype, idx_et = th.sort(etype)
    _, rev_idx = th.sort(idx_nt)
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
    g.ndata["t"] = ntype
    g.ndata["x"] = x
    g.edata["t"] = etype
    sorted_g = dgl.reorder_graph(
        g,
        node_permute_algo="custom",
        edge_permute_algo="custom",
        permute_config={
            "nodes_perm": idx_nt.to(idtype),
            "edges_perm": idx_et.to(idtype),
        },
    )
    print(sorted_g.ndata["t"])
    print(sorted_g.edata["t"])
    sorted_x = sorted_g.ndata["x"]
    sorted_y = m(
        sorted_g, sorted_x, sorted_ntype, sorted_etype, presorted=False
    )
1801
    assert sorted_y.shape == (g.num_nodes(), head_size * num_heads)
dddg617's avatar
dddg617 committed
1802
    # mini-batch
1803
    train_idx = th.randperm(100, dtype=idtype)[:10]
dddg617's avatar
dddg617 committed
1804
    sampler = dgl.dataloading.NeighborSampler([-1])
1805
1806
1807
    train_loader = dgl.dataloading.DataLoader(
        g, train_idx.to(dev), sampler, batch_size=8, device=dev, shuffle=True
    )
dddg617's avatar
dddg617 committed
1808
1809
1810
1811
1812
1813
1814
1815
    (input_nodes, output_nodes, block) = next(iter(train_loader))
    block = block[0]
    x = x[input_nodes.to(th.long)]
    ntype = ntype[input_nodes.to(th.long)]
    edge = block.edata[dgl.EID]
    etype = etype[edge.to(th.long)]
    y = m(block, x, ntype, etype)
    assert y.shape == (block.number_of_dst_nodes(), head_size * num_heads)
1816
    # TODO(minjie): enable the following check
1817
1818
    # assert th.allclose(y, sorted_y[rev_idx], atol=1e-4, rtol=1e-4)

1819

1820
1821
@pytest.mark.parametrize("self_loop", [True, False])
@pytest.mark.parametrize("get_distances", [True, False])
1822
def test_radius_graph(self_loop, get_distances):
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
    pos = th.tensor(
        [
            [0.1, 0.3, 0.4],
            [0.5, 0.2, 0.1],
            [0.7, 0.9, 0.5],
            [0.3, 0.2, 0.5],
            [0.2, 0.8, 0.2],
            [0.9, 0.2, 0.1],
            [0.7, 0.4, 0.4],
            [0.2, 0.1, 0.6],
            [0.5, 0.3, 0.5],
            [0.4, 0.2, 0.6],
        ]
    )
1837
1838
1839
1840
1841
1842
1843
1844
1845

    rg = nn.RadiusGraph(0.3, self_loop=self_loop)

    if get_distances:
        g, dists = rg(pos, get_distances=get_distances)
    else:
        g = rg(pos)

    if self_loop:
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
        src_target = th.tensor(
            [
                0,
                0,
                1,
                2,
                3,
                3,
                3,
                3,
                3,
                4,
                5,
                6,
                6,
                7,
                7,
                7,
                8,
                8,
                8,
                8,
                9,
                9,
                9,
                9,
            ]
        )
        dst_target = th.tensor(
            [
                0,
                3,
                1,
                2,
                0,
                3,
                7,
                8,
                9,
                4,
                5,
                6,
                8,
                3,
                7,
                9,
                3,
                6,
                8,
                9,
                3,
                7,
                8,
                9,
            ]
        )
1902
1903

        if get_distances:
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
            dists_target = th.tensor(
                [
                    [0.0000],
                    [0.2449],
                    [0.0000],
                    [0.0000],
                    [0.2449],
                    [0.0000],
                    [0.1732],
                    [0.2236],
                    [0.1414],
                    [0.0000],
                    [0.0000],
                    [0.0000],
                    [0.2449],
                    [0.1732],
                    [0.0000],
                    [0.2236],
                    [0.2236],
                    [0.2449],
                    [0.0000],
                    [0.1732],
                    [0.1414],
                    [0.2236],
                    [0.1732],
                    [0.0000],
                ]
            )
1932
1933
1934
1935
1936
    else:
        src_target = th.tensor([0, 3, 3, 3, 3, 6, 7, 7, 8, 8, 8, 9, 9, 9])
        dst_target = th.tensor([3, 0, 7, 8, 9, 8, 3, 9, 3, 6, 9, 3, 7, 8])

        if get_distances:
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
            dists_target = th.tensor(
                [
                    [0.2449],
                    [0.2449],
                    [0.1732],
                    [0.2236],
                    [0.1414],
                    [0.2449],
                    [0.1732],
                    [0.2236],
                    [0.2236],
                    [0.2449],
                    [0.1732],
                    [0.1414],
                    [0.2236],
                    [0.1732],
                ]
            )
1955
1956
1957
1958
1959
1960
1961
1962
1963

    src, dst = g.edges()

    assert th.equal(src, src_target)
    assert th.equal(dst, dst_target)

    if get_distances:
        assert th.allclose(dists, dists_target, rtol=1e-03)

1964

nv-dlasalle's avatar
nv-dlasalle committed
1965
@parametrize_idtype
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
def test_group_rev_res(idtype):
    dev = F.ctx()

    num_nodes = 5
    num_edges = 20
    feats = 32
    groups = 2
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, feats).to(dev)
    conv = nn.GraphConv(feats // groups, feats // groups)
    model = nn.GroupRevRes(conv, groups).to(dev)
1977
1978
    result = model(g, h)
    result.sum().backward()
rudongyu's avatar
rudongyu committed
1979

1980
1981
1982
1983
1984

@pytest.mark.parametrize("in_size", [16, 32])
@pytest.mark.parametrize("hidden_size", [16, 32])
@pytest.mark.parametrize("out_size", [16, 32])
@pytest.mark.parametrize("edge_feat_size", [16, 10, 0])
rudongyu's avatar
rudongyu committed
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
def test_egnn_conv(in_size, hidden_size, out_size, edge_feat_size):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    x = th.randn(num_nodes, 3).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    model = nn.EGNNConv(in_size, hidden_size, out_size, edge_feat_size).to(dev)
    model(g, h, x, e)

1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

@pytest.mark.parametrize("in_size", [16, 32])
@pytest.mark.parametrize("out_size", [16, 32])
@pytest.mark.parametrize(
    "aggregators",
    [
        ["mean", "max", "sum"],
        ["min", "std", "var"],
        ["moment3", "moment4", "moment5"],
    ],
)
@pytest.mark.parametrize(
    "scalers", [["identity"], ["amplification", "attenuation"]]
)
@pytest.mark.parametrize("delta", [2.5, 7.4])
@pytest.mark.parametrize("dropout", [0.0, 0.1])
@pytest.mark.parametrize("num_towers", [1, 4])
@pytest.mark.parametrize("edge_feat_size", [16, 0])
@pytest.mark.parametrize("residual", [True, False])
def test_pna_conv(
    in_size,
    out_size,
    aggregators,
    scalers,
    delta,
    dropout,
    num_towers,
    edge_feat_size,
    residual,
):
rudongyu's avatar
rudongyu committed
2026
2027
2028
2029
2030
2031
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
    model = nn.PNAConv(
        in_size,
        out_size,
        aggregators,
        scalers,
        delta,
        dropout,
        num_towers,
        edge_feat_size,
        residual,
    ).to(dev)
rudongyu's avatar
rudongyu committed
2043
    model(g, h, edge_feat=e)
2044

2045
2046
2047
2048
2049
2050
2051

@pytest.mark.parametrize("k", [3, 5])
@pytest.mark.parametrize("alpha", [0.0, 0.5, 1.0])
@pytest.mark.parametrize("norm_type", ["sym", "row"])
@pytest.mark.parametrize("clamp", [True, False])
@pytest.mark.parametrize("normalize", [True, False])
@pytest.mark.parametrize("reset", [True, False])
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
def test_label_prop(k, alpha, norm_type, clamp, normalize, reset):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    num_classes = 4
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    labels = th.tensor([0, 2, 1, 3, 0]).long().to(dev)
    ml_labels = th.rand(num_nodes, num_classes).to(dev) > 0.7
    mask = th.tensor([0, 1, 1, 1, 0]).bool().to(dev)
    model = nn.LabelPropagation(k, alpha, norm_type, clamp, normalize, reset)
    model(g, labels, mask)
    # multi-label case
    model(g, ml_labels, mask)

2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077

@pytest.mark.parametrize("in_size", [16])
@pytest.mark.parametrize("out_size", [16, 32])
@pytest.mark.parametrize(
    "aggregators", [["mean", "max", "dir2-av"], ["min", "std", "dir1-dx"]]
)
@pytest.mark.parametrize("scalers", [["amplification", "attenuation"]])
@pytest.mark.parametrize("delta", [2.5])
@pytest.mark.parametrize("edge_feat_size", [16, 0])
def test_dgn_conv(
    in_size, out_size, aggregators, scalers, delta, edge_feat_size
):
2078
2079
2080
2081
2082
2083
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
2084
    transform = dgl.LaplacianPE(k=3, feat_name="eig")
2085
    g = transform(g)
2086
2087
2088
2089
2090
2091
2092
2093
2094
    eig = g.ndata["eig"]
    model = nn.DGNConv(
        in_size,
        out_size,
        aggregators,
        scalers,
        delta,
        edge_feat_size=edge_feat_size,
    ).to(dev)
2095
2096
    model(g, h, edge_feat=e, eig_vec=eig)

2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
    aggregators_non_eig = [
        aggr for aggr in aggregators if not aggr.startswith("dir")
    ]
    model = nn.DGNConv(
        in_size,
        out_size,
        aggregators_non_eig,
        scalers,
        delta,
        edge_feat_size=edge_feat_size,
    ).to(dev)
2108
    model(g, h, edge_feat=e)
LuckyLiuM's avatar
LuckyLiuM committed
2109

2110

LuckyLiuM's avatar
LuckyLiuM committed
2111
2112
2113
def test_DeepWalk():
    dev = F.ctx()
    g = dgl.graph(([0, 1, 2, 1, 2, 0], [1, 2, 0, 0, 1, 2]))
2114
2115
2116
    model = nn.DeepWalk(
        g, emb_dim=8, walk_length=2, window_size=1, fast_neg=True, sparse=True
    )
LuckyLiuM's avatar
LuckyLiuM committed
2117
    model = model.to(dev)
2118
2119
2120
    dataloader = DataLoader(
        torch.arange(g.num_nodes()), batch_size=16, collate_fn=model.sample
    )
LuckyLiuM's avatar
LuckyLiuM committed
2121
2122
2123
2124
2125
2126
    optim = SparseAdam(model.parameters(), lr=0.01)
    walk = next(iter(dataloader)).to(dev)
    loss = model(walk)
    loss.backward()
    optim.step()

2127
2128
2129
    model = nn.DeepWalk(
        g, emb_dim=8, walk_length=2, window_size=1, fast_neg=False, sparse=False
    )
LuckyLiuM's avatar
LuckyLiuM committed
2130
    model = model.to(dev)
2131
2132
2133
    dataloader = DataLoader(
        torch.arange(g.num_nodes()), batch_size=16, collate_fn=model.sample
    )
LuckyLiuM's avatar
LuckyLiuM committed
2134
2135
2136
2137
2138
    optim = Adam(model.parameters(), lr=0.01)
    walk = next(iter(dataloader)).to(dev)
    loss = model(walk)
    loss.backward()
    optim.step()
LuckyLiuM's avatar
LuckyLiuM committed
2139

2140
2141
2142
2143

@pytest.mark.parametrize("max_degree", [2, 6])
@pytest.mark.parametrize("embedding_dim", [8, 16])
@pytest.mark.parametrize("direction", ["in", "out", "both"])
2144
def test_degree_encoder(max_degree, embedding_dim, direction):
2145
2146
2147
2148
2149
2150
    g = dgl.graph(
        (
            th.tensor([0, 0, 0, 1, 1, 2, 3, 3]),
            th.tensor([1, 2, 3, 0, 3, 0, 0, 1]),
        )
    )
2151
    # test heterograph
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
    hg = dgl.heterograph(
        {
            ("drug", "interacts", "drug"): (
                th.tensor([0, 1]),
                th.tensor([1, 2]),
            ),
            ("drug", "interacts", "gene"): (
                th.tensor([0, 1]),
                th.tensor([2, 3]),
            ),
            ("drug", "treats", "disease"): (th.tensor([1]), th.tensor([2])),
        }
    )
2165
2166
2167
2168
2169
2170
    model = nn.DegreeEncoder(max_degree, embedding_dim, direction=direction)
    de_g = model(g)
    de_hg = model(hg)
    assert de_g.shape == (4, embedding_dim)
    assert de_hg.shape == (10, embedding_dim)

2171

LuckyLiuM's avatar
LuckyLiuM committed
2172
2173
2174
@parametrize_idtype
def test_MetaPath2Vec(idtype):
    dev = F.ctx()
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
    g = dgl.heterograph(
        {
            ("user", "uc", "company"): ([0, 0, 2, 1, 3], [1, 2, 1, 3, 0]),
            ("company", "cp", "product"): (
                [0, 0, 0, 1, 2, 3],
                [0, 2, 3, 0, 2, 1],
            ),
            ("company", "cu", "user"): ([1, 2, 1, 3, 0], [0, 0, 2, 1, 3]),
            ("product", "pc", "company"): (
                [0, 2, 3, 0, 2, 1],
                [0, 0, 0, 1, 2, 3],
            ),
        },
        idtype=idtype,
        device=dev,
    )
    model = nn.MetaPath2Vec(g, ["uc", "cu"], window_size=1)
LuckyLiuM's avatar
LuckyLiuM committed
2192
2193
2194
    model = model.to(dev)
    embeds = model.node_embed.weight
    assert embeds.shape[0] == g.num_nodes()
2195

2196
2197
2198
2199
2200
2201
2202
2203
2204
2205

@pytest.mark.parametrize("num_layer", [1, 4])
@pytest.mark.parametrize("k", [3, 5])
@pytest.mark.parametrize("lpe_dim", [4, 16])
@pytest.mark.parametrize("n_head", [1, 4])
@pytest.mark.parametrize("batch_norm", [True, False])
@pytest.mark.parametrize("num_post_layer", [0, 1, 2])
def test_LaplacianPosEnc(
    num_layer, k, lpe_dim, n_head, batch_norm, num_post_layer
):
2206
2207
2208
2209
2210
2211
    ctx = F.ctx()
    num_nodes = 4

    EigVals = th.randn((num_nodes, k)).to(ctx)
    EigVecs = th.randn((num_nodes, k)).to(ctx)

2212
2213
2214
    model = nn.LaplacianPosEnc(
        "Transformer", num_layer, k, lpe_dim, n_head, batch_norm, num_post_layer
    ).to(ctx)
2215
2216
    assert model(EigVals, EigVecs).shape == (num_nodes, lpe_dim)

2217
2218
2219
2220
2221
2222
2223
2224
    model = nn.LaplacianPosEnc(
        "DeepSet",
        num_layer,
        k,
        lpe_dim,
        batch_norm=batch_norm,
        num_post_layer=num_post_layer,
    ).to(ctx)
2225
    assert model(EigVals, EigVecs).shape == (num_nodes, lpe_dim)
2226

2227
2228
2229
2230
2231
2232
2233
2234
2235

@pytest.mark.parametrize("feat_size", [128, 512])
@pytest.mark.parametrize("num_heads", [8, 16])
@pytest.mark.parametrize("bias", [True, False])
@pytest.mark.parametrize("attn_bias_type", ["add", "mul"])
@pytest.mark.parametrize("attn_drop", [0.1, 0.5])
def test_BiasedMultiheadAttention(
    feat_size, num_heads, bias, attn_bias_type, attn_drop
):
2236
2237
2238
2239
    ndata = th.rand(16, 100, feat_size)
    attn_bias = th.rand(16, 100, 100, num_heads)
    attn_mask = th.rand(16, 100, 100) < 0.5

2240
2241
2242
    net = nn.BiasedMultiheadAttention(
        feat_size, num_heads, bias, attn_bias_type, attn_drop
    )
2243
2244
2245
    out = net(ndata, attn_bias, attn_mask)

    assert out.shape == (16, 100, feat_size)
2246

2247
2248
2249

@pytest.mark.parametrize("attn_bias_type", ["add", "mul"])
@pytest.mark.parametrize("norm_first", [True, False])
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
def test_GraphormerLayer(attn_bias_type, norm_first):
    batch_size = 16
    num_nodes = 100
    feat_size = 512
    num_heads = 8
    nfeat = th.rand(batch_size, num_nodes, feat_size)
    attn_bias = th.rand(batch_size, num_nodes, num_nodes, num_heads)
    attn_mask = th.rand(batch_size, num_nodes, num_nodes) < 0.5

    net = nn.GraphormerLayer(
        feat_size=feat_size,
        hidden_size=2048,
        num_heads=num_heads,
        attn_bias_type=attn_bias_type,
        norm_first=norm_first,
        dropout=0.1,
2266
        activation=th.nn.ReLU(),
2267
2268
2269
2270
2271
    )
    out = net(nfeat, attn_bias, attn_mask)

    assert out.shape == (batch_size, num_nodes, feat_size)

2272
2273
2274
2275

@pytest.mark.parametrize("max_len", [1, 4])
@pytest.mark.parametrize("feat_dim", [16])
@pytest.mark.parametrize("num_heads", [1, 8])
2276
2277
def test_PathEncoder(max_len, feat_dim, num_heads):
    dev = F.ctx()
2278
2279
2280
2281
2282
2283
2284
2285
2286
    g1 = dgl.graph(
        (
            th.tensor([0, 0, 0, 1, 1, 2, 3, 3]),
            th.tensor([1, 2, 3, 0, 3, 0, 0, 1]),
        )
    ).to(dev)
    g2 = dgl.graph(
        (th.tensor([0, 1, 2, 3, 2, 5]), th.tensor([1, 2, 3, 4, 0, 3]))
    ).to(dev)
2287
2288
2289
2290
2291
    bg = dgl.batch([g1, g2])
    edge_feat = th.rand(bg.num_edges(), feat_dim).to(dev)
    model = nn.PathEncoder(max_len, feat_dim, num_heads=num_heads).to(dev)
    bias = model(bg, edge_feat)
    assert bias.shape == (2, 6, 6, num_heads)
2292

2293
2294
2295
2296

@pytest.mark.parametrize("max_dist", [1, 4])
@pytest.mark.parametrize("num_kernels", [8, 16])
@pytest.mark.parametrize("num_heads", [1, 8])
2297
2298
def test_SpatialEncoder(max_dist, num_kernels, num_heads):
    dev = F.ctx()
2299
2300
2301
2302
2303
2304
2305
2306
2307
    g1 = dgl.graph(
        (
            th.tensor([0, 0, 0, 1, 1, 2, 3, 3]),
            th.tensor([1, 2, 3, 0, 3, 0, 0, 1]),
        )
    ).to(dev)
    g2 = dgl.graph(
        (th.tensor([0, 1, 2, 3, 2, 5]), th.tensor([1, 2, 3, 4, 0, 3]))
    ).to(dev)
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
    bg = dgl.batch([g1, g2])
    ndata = th.rand(bg.num_nodes(), 3).to(dev)
    num_nodes = bg.num_nodes()
    node_type = th.randint(0, 512, (num_nodes,)).to(dev)
    model_1 = nn.SpatialEncoder(max_dist, num_heads=num_heads).to(dev)
    model_2 = nn.SpatialEncoder3d(num_kernels, num_heads=num_heads).to(dev)
    model_3 = nn.SpatialEncoder3d(
        num_kernels, num_heads=num_heads, max_node_type=512
    ).to(dev)
    encoding = model_1(bg)
    encoding3d_1 = model_2(bg, ndata)
    encoding3d_2 = model_3(bg, ndata, node_type)
    assert encoding.shape == (2, 6, 6, num_heads)
    assert encoding3d_1.shape == (2, 6, 6, num_heads)
    assert encoding3d_2.shape == (2, 6, 6, num_heads)