spmm.h 21.1 KB
Newer Older
1
/**
2
 *  Copyright (c) 2020 by Contributors
3
4
 * @file array/cpu/spmm.h
 * @brief SPMM CPU kernel function header.
5
6
7
8
9
10
 */
#ifndef DGL_ARRAY_CPU_SPMM_H_
#define DGL_ARRAY_CPU_SPMM_H_

#include <dgl/array.h>
#include <dgl/bcast.h>
11
#include <dgl/runtime/config.h>
12
#include <dgl/runtime/parallel_for.h>
13
#include <math.h>
14

15
#include <algorithm>
16
17
#include <limits>
#include <memory>
18
#include <vector>
19

20
21
#include "spmm_binary_ops.h"
#if !defined(_WIN32)
22
23
24
#ifdef USE_LIBXSMM
#include "spmm_blocking_libxsmm.h"
#endif  // USE_LIBXSMM
25
#endif  // _WIN32
26
27
28
29
namespace dgl {
namespace aten {
namespace cpu {

30
31
32
33
template <typename DType>
using AccType = typename std::conditional<
    std::is_same<DType, BFloat16>::value, float, DType>::type;

34
/**
35
36
37
38
39
40
41
42
 * @brief Naive CPU kernel of SpMM on Csr format.
 * @param cpu_spec JIT'ed kernel
 * @param bcast Broadcast information.
 * @param csr The Csr matrix.
 * @param X The feature on source nodes.
 * @param W The feature on edges.
 * @param O The result feature on destination nodes.
 * @note it uses node parallel strategy, different threads are responsible
43
44
45
 *       for the computation of different nodes.
 */
template <typename IdType, typename DType, typename Op>
46
47
48
void SpMMSumCsrNaive(
    const BcastOff& bcast, const CSRMatrix& csr, const DType* X, const DType* W,
    DType* O) {
49
50
51
52
53
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  const IdType* indices = csr.indices.Ptr<IdType>();
  const IdType* edges = csr.data.Ptr<IdType>();
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
54
55
56
57
  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      DType* out_off = O + rid * dim;
58
59
60
61
62
      for (int64_t k = 0; k < dim; ++k) {
        AccType<DType> acc = 0.;
        for (IdType j = row_start; j < row_end; ++j) {
          const IdType cid = indices[j];
          const IdType eid = has_idx ? edges[j] : j;
63
64
65
          const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* lhs_off =
66
              Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr;
67
          const DType* rhs_off =
68
              Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
69
          acc += Op::Call(lhs_off, rhs_off);
70
        }
71
        out_off[k] += acc;
72
73
      }
    }
74
  });
75
76
}

77
/**
78
79
80
81
82
83
84
 * @brief CPU kernel of SpMM on Csr format.
 * @param bcast Broadcast information.
 * @param csr The Csr matrix.
 * @param ufeat The feature on source nodes.
 * @param efeat The feature on edges.
 * @param out The result feature on destination nodes.
 * @note it uses node parallel strategy, different threads are responsible
85
86
87
 *       for the computation of different nodes.
 */
template <typename IdType, typename DType, typename Op>
88
89
90
void SpMMSumCsr(
    const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat, NDArray efeat,
    NDArray out) {
91
92
93
94
95
96
97
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = csr.indptr.Ptr<IdType>();
  const IdType* indices = csr.indices.Ptr<IdType>();
  const IdType* edges = csr.data.Ptr<IdType>();
  const DType* X = ufeat.Ptr<DType>();
  const DType* W = efeat.Ptr<DType>();
  DType* O = out.Ptr<DType>();
98
99
100
101
102
103
104
  CHECK_NOTNULL(indptr);
  CHECK_NOTNULL(O);
  if (Op::use_lhs) {
    CHECK_NOTNULL(indices);
    CHECK_NOTNULL(X);
  }
  if (Op::use_rhs) {
105
    if (has_idx) CHECK_NOTNULL(edges);
106
107
    CHECK_NOTNULL(W);
  }
108
#if !defined(_WIN32)
109
#ifdef USE_LIBXSMM
110
111
112
  const bool no_libxsmm = bcast.use_bcast ||
                          std::is_same<DType, double>::value ||
                          !dgl::runtime::Config::Global()->IsLibxsmmAvailable();
113
114
  if (!no_libxsmm) {
    SpMMSumCsrLibxsmm<IdType, DType, Op>(bcast, csr, ufeat, efeat, out);
115
  } else {
116
#endif  // USE_LIBXSMM
117
#endif  // _WIN32
118
    SpMMSumCsrNaive<IdType, DType, Op>(bcast, csr, X, W, O);
119
#if !defined(_WIN32)
120
#ifdef USE_LIBXSMM
121
  }
122
#endif  // USE_LIBXSMM
123
#endif  // _WIN32
124
125
}

126
/**
127
128
129
130
131
132
133
 * @brief CPU kernel of SpMM on Coo format.
 * @param bcast Broadcast information.
 * @param coo The Coo matrix.
 * @param ufeat The feature on source nodes.
 * @param efeat The feature on edges.
 * @param out The result feature on destination nodes.
 * @note it uses node parallel strategy, different threads are responsible
134
135
136
137
 *       for the computation of different nodes. To avoid possible data hazard,
 *       we use atomic operators in the reduction phase.
 */
template <typename IdType, typename DType, typename Op>
138
139
typename std::enable_if<!std::is_same<DType, BFloat16>::value, void>::type
SpMMSumCoo(
140
141
    const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat, NDArray efeat,
    NDArray out) {
142
143
144
145
146
147
  const bool has_idx = !IsNullArray(coo.data);
  const IdType* row = coo.row.Ptr<IdType>();
  const IdType* col = coo.col.Ptr<IdType>();
  const IdType* edges = coo.data.Ptr<IdType>();
  const DType* X = ufeat.Ptr<DType>();
  const DType* W = efeat.Ptr<DType>();
148
  int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len, rhs_dim = bcast.rhs_len;
149
150
151
152
153
154
155
156
157
  DType* O = out.Ptr<DType>();
  const int64_t nnz = coo.row->shape[0];
  // fill zero elements
  memset(O, 0, out.GetSize());
  // spmm
#pragma omp parallel for
  for (IdType i = 0; i < nnz; ++i) {
    const IdType rid = row[i];
    const IdType cid = col[i];
158
    const IdType eid = has_idx ? edges[i] : i;
159
160
161
162
    DType* out_off = O + cid * dim;
    for (int64_t k = 0; k < dim; ++k) {
      const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
      const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
163
      const DType* lhs_off =
164
          Op::use_lhs ? X + rid * lhs_dim + lhs_add : nullptr;
165
      const DType* rhs_off =
166
          Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
167
      const DType val = Op::Call(lhs_off, rhs_off);
168
      if (val != 0) {
169
#pragma omp atomic
170
171
        out_off[k] += val;
      }
172
173
174
175
    }
  }
}

176
177
178
179
180
181
182
183
template <typename IdType, typename DType, typename Op>
typename std::enable_if<std::is_same<DType, BFloat16>::value, void>::type
SpMMSumCoo(
    const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat, NDArray efeat,
    NDArray out) {
  LOG(FATAL) << "Unsupported CPU kernel for SpMMSumCoo for BF16.";
}

184
/**
185
186
187
188
189
190
191
 * @brief CPU kernel of SpMM-Min/Max on Csr format.
 * @param bcast Broadcast information.
 * @param csr The Csr matrix.
 * @param ufeat The feature on source nodes.
 * @param efeat The feature on edges.
 * @param out The result feature on destination nodes.
 * @param argu Arg-Min/Max on source nodes, which refers the source node indices
192
 *        correspond to the minimum/maximum values of reduction result on
193
 *        destination nodes. It's useful in computing gradients of Min/Max
194
 *        reducer.
195
 * @param arge Arg-Min/Max on edges. which refers the source node indices
196
          correspond to the minimum/maximum values of reduction result on
197
 *        destination nodes. It's useful in computing gradients of Min/Max
198
 *        reducer.
199
 * @note It uses node parallel strategy, different threads are responsible for
200
 *       the computation of different nodes.
201
 * @note The result will contain infinity for zero-degree nodes.
202
203
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
204
205
206
void SpMMCmpCsr(
    const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat, NDArray efeat,
    NDArray out, NDArray argu, NDArray arge) {
207
208
209
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices = static_cast<IdType*>(csr.indices->data);
210
  const IdType* edges =
211
      has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
212
213
214
  const DType* X = Op::use_lhs ? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len,
215
216
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
217
218
  IdType* argX = Op::use_lhs ? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs ? static_cast<IdType*>(arge->data) : nullptr;
219
220
221
222
223
224
225
226
  CHECK_NOTNULL(indptr);
  CHECK_NOTNULL(O);
  if (Op::use_lhs) {
    CHECK_NOTNULL(indices);
    CHECK_NOTNULL(X);
    CHECK_NOTNULL(argX);
  }
  if (Op::use_rhs) {
227
    if (has_idx) CHECK_NOTNULL(edges);
228
229
230
231
232
233
    CHECK_NOTNULL(W);
    CHECK_NOTNULL(argW);
  }
#if !defined(_WIN32)
#ifdef USE_LIBXSMM

234
235
236
  const bool no_libxsmm = bcast.use_bcast ||
                          std::is_same<DType, double>::value ||
                          !dgl::runtime::Config::Global()->IsLibxsmmAvailable();
237
  if (!no_libxsmm) {
238
239
    SpMMCmpCsrLibxsmm<IdType, DType, Op, Cmp>(
        bcast, csr, ufeat, efeat, out, argu, arge);
240
241
242
243
  } else {
#endif  // USE_LIBXSMM
#endif  // _WIN32

244
245
246
247
248
249
250
251
252
253
254
255
256
    runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
      for (auto rid = b; rid < e; ++rid) {
        const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
        DType* out_off = O + rid * dim;
        IdType* argx_off = argX + rid * dim;
        IdType* argw_off = argW + rid * dim;
        for (IdType j = row_start; j < row_end; ++j) {
          const IdType cid = indices[j];
          const IdType eid = has_idx ? edges[j] : j;
          for (int64_t k = 0; k < dim; ++k) {
            const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
            const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
            const DType* lhs_off =
257
                Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr;
258
            const DType* rhs_off =
259
                Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
260
261
262
263
264
265
266
            const DType val = Op::Call(lhs_off, rhs_off);
            if (Cmp::Call(out_off[k], val)) {
              out_off[k] = val;
              if (Op::use_lhs) argx_off[k] = cid;
              if (Op::use_rhs) argw_off[k] = eid;
            }
          }
267
268
        }
      }
269
    });
270
271
272
273
274
#if !defined(_WIN32)
#ifdef USE_LIBXSMM
  }
#endif  // USE_LIBXSMM
#endif  // _WIN32
275
276
}

277
/**
278
279
280
281
282
283
284
 * @brief CPU kernel of SpMM-Min/Max on Csr format.
 * @param bcast Broadcast information.
 * @param csr The Csr matrix.
 * @param ufeat The feature on source nodes.
 * @param efeat The feature on edges.
 * @param out The result feature on destination nodes.
 * @param argu Arg-Min/Max on source nodes, which refers the source node indices
285
286
 *        correspond to the minimum/maximum values of reduction result on
 *        destination nodes. It's useful in computing gradients of Min/Max
287
 *        reducer.
288
 * @param arge Arg-Min/Max on edges. which refers the source node indices
289
 *        correspond to the minimum/maximum values of reduction result on
290
 *        destination nodes. It's useful in computing gradients of Min/Max
291
 *        reducer.
292
 * @param argu_ntype Node type of the arg-Min/Max on source nodes, which refers
293
294
295
 *        the source node types correspond to the minimum/maximum values of
 *        reduction result on destination nodes. It's useful in computing
 *        gradients of Min/Max reducer.
296
 * @param arge_etype Edge-type of the arg-Min/Max on edges. which refers the
297
298
299
 *        source node indices correspond to the minimum/maximum values of
 *        reduction result on destination nodes. It's useful in computing
 *        gradients of Min/Max reducer.
300
301
 * @param src_type Node type of the source nodes of an etype
 * @param etype Edge type
302
303
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
304
305
306
307
void SpMMCmpCsrHetero(
    const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat, NDArray efeat,
    NDArray out, NDArray argu, NDArray arge, NDArray argu_ntype,
    NDArray arge_etype, const int ntype, const int etype) {
308
309
310
311
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices = static_cast<IdType*>(csr.indices->data);
  const IdType* edges =
312
      has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
313
314
315
316
317
318
319
  const DType* X = Op::use_lhs ? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len,
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
  IdType* argX = Op::use_lhs ? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs ? static_cast<IdType*>(arge->data) : nullptr;
320
321
322
323
  IdType* argX_ntype =
      Op::use_lhs ? static_cast<IdType*>(argu_ntype->data) : nullptr;
  IdType* argW_etype =
      Op::use_rhs ? static_cast<IdType*>(arge_etype->data) : nullptr;
324
325
326
327
328
329
330
331
  CHECK_NOTNULL(indptr);
  CHECK_NOTNULL(O);
  if (Op::use_lhs) {
    CHECK_NOTNULL(indices);
    CHECK_NOTNULL(X);
    CHECK_NOTNULL(argX);
  }
  if (Op::use_rhs) {
332
    if (has_idx) CHECK_NOTNULL(edges);
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    CHECK_NOTNULL(W);
    CHECK_NOTNULL(argW);
  }
  // TODO(Israt): Use LIBXSMM. Homogeneous graph uses LIBXMM when enabled.
  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      DType* out_off = O + rid * dim;
      IdType* argx_off = argX + rid * dim;
      IdType* argw_off = argW + rid * dim;
      IdType* argx_ntype = argX_ntype + rid * dim;
      IdType* argw_etype = argW_etype + rid * dim;
      for (IdType j = row_start; j < row_end; ++j) {
        const IdType cid = indices[j];
        const IdType eid = has_idx ? edges[j] : j;
        for (int64_t k = 0; k < dim; ++k) {
          const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* lhs_off =
352
              Op::use_lhs ? X + cid * lhs_dim + lhs_add : nullptr;
353
          const DType* rhs_off =
354
              Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
          const DType val = Op::Call(lhs_off, rhs_off);
          if (Cmp::Call(out_off[k], val)) {
            out_off[k] = val;
            if (Op::use_lhs) {
              argx_off[k] = cid;
              argx_ntype[k] = ntype;
            }
            if (Op::use_rhs) {
              argw_off[k] = eid;
              argw_etype[k] = etype;
            }
          }
        }
      }
    }
  });
}

373
/**
374
375
376
377
378
379
380
 * @brief CPU kernel of SpMM-Min/Max on Coo format.
 * @param bcast Broadcast information.
 * @param coo The Coo matrix.
 * @param ufeat The feature on source nodes.
 * @param efeat The feature on edges.
 * @param out The result feature on destination nodes.
 * @param argu Arg-Min/Max on source nodes, which refers the source node indices
381
 *        correspond to the minimum/maximum values of reduction result on
382
 *        destination nodes. It's useful in computing gradients of Min/Max
383
 *        reducer.
384
 * @param arge Arg-Min/Max on edges. which refers the source node indices
385
 *        correspond to the minimum/maximum values of reduction result on
386
 *        destination nodes. It's useful in computing gradients of Min/Max
387
 *        reducer.
388
 * @note it uses node parallel strategy, different threads are responsible for
389
390
 *       the computation of different nodes. To avoid possible data hazard, we
 *       use atomic operators in the reduction phase.
391
 * @note The result will contain infinity for zero-degree nodes.
392
393
 */
template <typename IdType, typename DType, typename Op, typename Cmp>
394
395
396
void SpMMCmpCoo(
    const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat, NDArray efeat,
    NDArray out, NDArray argu, NDArray arge) {
397
398
399
  const bool has_idx = !IsNullArray(coo.data);
  const IdType* row = static_cast<IdType*>(coo.row->data);
  const IdType* col = static_cast<IdType*>(coo.col->data);
400
  const IdType* edges =
401
      has_idx ? static_cast<IdType*>(coo.data->data) : nullptr;
402
403
404
  const DType* X = Op::use_lhs ? static_cast<DType*>(ufeat->data) : nullptr;
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, lhs_dim = bcast.lhs_len,
405
406
                rhs_dim = bcast.rhs_len;
  DType* O = static_cast<DType*>(out->data);
407
408
  IdType* argX = Op::use_lhs ? static_cast<IdType*>(argu->data) : nullptr;
  IdType* argW = Op::use_rhs ? static_cast<IdType*>(arge->data) : nullptr;
409
410
411
412
413
414
415
416
  const int64_t nnz = coo.row->shape[0];
  // fill zero elements
  std::fill(O, O + out.NumElements(), Cmp::zero);
  // spmm
#pragma omp parallel for
  for (IdType i = 0; i < nnz; ++i) {
    const IdType rid = row[i];
    const IdType cid = col[i];
417
    const IdType eid = has_idx ? edges[i] : i;
418
    DType* out_off = O + cid * dim;
419
420
    IdType* argx_off = Op::use_lhs ? argX + cid * dim : nullptr;
    IdType* argw_off = Op::use_rhs ? argW + cid * dim : nullptr;
421
422
423
    for (int64_t k = 0; k < dim; ++k) {
      const int64_t lhs_add = bcast.use_bcast ? bcast.lhs_offset[k] : k;
      const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
424
      const DType* lhs_off =
425
          Op::use_lhs ? X + rid * lhs_dim + lhs_add : nullptr;
426
      const DType* rhs_off =
427
          Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
428
429
430
431
      const DType val = Op::Call(lhs_off, rhs_off);
#pragma omp critical
      if (Cmp::Call(out_off[k], val)) {
        out_off[k] = val;
432
433
        if (Op::use_lhs) argx_off[k] = rid;
        if (Op::use_rhs) argw_off[k] = eid;
434
435
436
437
438
      }
    }
  }
}

439
/**
440
441
442
443
444
445
 * @brief CPU kernel of Edge_softmax_csr_forward on Csr format.
 * @param bcast Broadcast information.
 * @param csr The Csr matrix.
 * @param ufeat The feature on source nodes.
 * @param efeat The feature on edges.
 * @param out The result of edge_softmax_forward.
446
447
 */
template <typename IdType, typename DType, typename Op>
448
449
450
void Edge_softmax_csr_forward(
    const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat, NDArray efeat,
    NDArray out) {
451
452
453
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* edges =
454
      has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
455
456
457
458
459
  const DType* W = Op::use_rhs ? static_cast<DType*>(efeat->data) : nullptr;
  const int64_t dim = bcast.out_len, rhs_dim = bcast.rhs_len;
  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
460
      std::vector<AccType<DType>> data_e(row_end - row_start, 0);
461
      std::vector<IdType> num(row_end - row_start, 0);
462
463
464
465
466
467
      for (int64_t k = 0; k < dim; ++k) {
        DType max_v = -std::numeric_limits<DType>::infinity();
        for (IdType j = row_start; j < row_end; ++j) {
          const IdType eid = has_idx ? edges[j] : j;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* rhs_off =
468
469
470
              Op::use_rhs ? W + eid * rhs_dim + rhs_add : nullptr;
          data_e[j - row_start] = *rhs_off;
          num[j - row_start] = eid * rhs_dim + rhs_add;
471
472
473
474
475
476
477
478
          max_v = std::max<DType>(max_v, (*rhs_off));
        }
        DType exp_sum = 0;
        for (auto& element : data_e) {
          element -= max_v;
          element = std::exp(element);
          exp_sum += element;
        }
479
480
        for (int i = 0; i < row_end - row_start; i++) {
          out.Ptr<DType>()[num[i]] = data_e[i] / exp_sum;
481
482
483
484
485
486
        }
      }
    }
  });
}

487
/**
488
489
490
491
492
493
 * @brief CPU kernel of Edge_softmax_csr_backward on Csr format.
 * @param bcast Broadcast information.
 * @param csr The Csr matrix.
 * @param out The result of forward.
 * @param sds The result of gradiet * out.
 * @param back_out The result of edge_softmax_backward.
494
495
 */
template <typename IdType, typename DType, typename Op>
496
497
498
void Edge_softmax_csr_backward(
    const BcastOff& bcast, const CSRMatrix& csr, NDArray out, NDArray sds,
    NDArray back_out) {
499
500
  typedef typename std::conditional<
      std::is_same<DType, BFloat16>::value, float, DType>::type AccType;
501
502
503
  const bool has_idx = !IsNullArray(csr.data);
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* edges =
504
      has_idx ? static_cast<IdType*>(csr.data->data) : nullptr;
505
506
507
508
509
510
511
  const DType* W_out = Op::use_rhs ? static_cast<DType*>(out->data) : nullptr;
  const DType* W_sds = Op::use_rhs ? static_cast<DType*>(sds->data) : nullptr;
  const int64_t dim = bcast.out_len, rhs_dim = bcast.rhs_len;
  runtime::parallel_for(0, csr.num_rows, [&](size_t b, size_t e) {
    for (auto rid = b; rid < e; ++rid) {
      const IdType row_start = indptr[rid], row_end = indptr[rid + 1];
      for (int64_t k = 0; k < dim; ++k) {
512
        AccType sum_sds = 0;
513
514
515
516
        for (IdType j = row_start; j < row_end; ++j) {
          const IdType eid = has_idx ? edges[j] : j;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* rhs_off_sds =
517
              Op::use_rhs ? W_sds + eid * rhs_dim + rhs_add : nullptr;
518
519
          sum_sds += (*rhs_off_sds);
        }
520
        for (IdType j = row_start; j < row_end; ++j) {
521
522
523
          const IdType eid = has_idx ? edges[j] : j;
          const int64_t rhs_add = bcast.use_bcast ? bcast.rhs_offset[k] : k;
          const DType* rhs_off_out =
524
              Op::use_rhs ? W_out + eid * rhs_dim + rhs_add : nullptr;
525
          const DType* rhs_off_sds =
526
527
528
              Op::use_rhs ? W_sds + eid * rhs_dim + rhs_add : nullptr;
          back_out.Ptr<DType>()[eid * rhs_dim + rhs_add] =
              (*rhs_off_sds) - sum_sds * (*rhs_off_out);
529
530
531
532
533
534
        }
      }
    }
  });
}

535
536
537
538
539
}  // namespace cpu
}  // namespace aten
}  // namespace dgl

#endif  // DGL_ARRAY_CPU_SPMM_H_