"vscode:/vscode.git/clone" did not exist on "fda8fd224221a4ac59dc93ac22e69fd8e9d46c7f"
test_nn.py 54.2 KB
Newer Older
1
import io
2
3
4
5
import torch as th
import networkx as nx
import dgl
import dgl.nn.pytorch as nn
6
import dgl.function as fn
7
import backend as F
8
import pytest
9
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
nv-dlasalle's avatar
nv-dlasalle committed
10
from test_utils import parametrize_idtype
11
from copy import deepcopy
12
import pickle
13

14
15
import scipy as sp

16
17
tmp_buffer = io.BytesIO()

18
19
20
21
22
def _AXWb(A, X, W, b):
    X = th.matmul(X, W)
    Y = th.matmul(A, X.view(X.shape[0], -1)).view_as(X)
    return Y + b

23
24
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv0(out_dim):
25
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
26
    ctx = F.ctx()
27
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
28

29
    conv = nn.GraphConv(5, out_dim, norm='none', bias=True)
30
    conv = conv.to(ctx)
31
    print(conv)
32
33
34
35
36

    # test pickle
    th.save(conv, tmp_buffer)


37
    # test#1: basic
38
    h0 = F.ones((3, 5))
39
    h1 = conv(g, h0)
40
41
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
42
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
43
    # test#2: more-dim
44
    h0 = F.ones((3, 5, 5))
45
    h1 = conv(g, h0)
46
47
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
48
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
49

50
    conv = nn.GraphConv(5, out_dim)
51
    conv = conv.to(ctx)
52
    # test#3: basic
53
    h0 = F.ones((3, 5))
54
    h1 = conv(g, h0)
55
56
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
57
    # test#4: basic
58
    h0 = F.ones((3, 5, 5))
59
    h1 = conv(g, h0)
60
61
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
62

63
    conv = nn.GraphConv(5, out_dim)
64
    conv = conv.to(ctx)
65
    # test#3: basic
66
    h0 = F.ones((3, 5))
67
    h1 = conv(g, h0)
68
69
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
70
    # test#4: basic
71
    h0 = F.ones((3, 5, 5))
72
    h1 = conv(g, h0)
73
74
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
75
76
77
78
79

    # test rest_parameters
    old_weight = deepcopy(conv.weight.data)
    conv.reset_parameters()
    new_weight = conv.weight.data
80
    assert not F.allclose(old_weight, new_weight)
81

nv-dlasalle's avatar
nv-dlasalle committed
82
@parametrize_idtype
83
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree', 'dglgraph']))
84
@pytest.mark.parametrize('norm', ['none', 'both', 'right', 'left'])
85
86
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
87
88
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv(idtype, g, norm, weight, bias, out_dim):
89
90
    # Test one tensor input
    g = g.astype(idtype).to(F.ctx())
91
92
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, out_dim)).to(F.ctx())
93
94
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
95
96
    h = F.randn((nsrc, 5)).to(F.ctx())
    if weight:
97
        h_out = conv(g, h)
98
    else:
99
        h_out = conv(g, h, weight=ext_w)
100
    assert h_out.shape == (ndst, out_dim)
101

nv-dlasalle's avatar
nv-dlasalle committed
102
@parametrize_idtype
103
104
105
106
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
107
108
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_e_weight(idtype, g, norm, weight, bias, out_dim):
109
    g = g.astype(idtype).to(F.ctx())
110
111
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, out_dim)).to(F.ctx())
112
113
114
115
116
117
118
119
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    e_w = g.edata['scalar_w']
    if weight:
        h_out = conv(g, h, edge_weight=e_w)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=e_w)
120
    assert h_out.shape == (ndst, out_dim)
121

nv-dlasalle's avatar
nv-dlasalle committed
122
@parametrize_idtype
123
124
125
126
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
127
128
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_e_weight_norm(idtype, g, norm, weight, bias, out_dim):
129
    g = g.astype(idtype).to(F.ctx())
130
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
131
132
133
134

    # test pickle
    th.save(conv, tmp_buffer)

135
    ext_w = F.randn((5, out_dim)).to(F.ctx())
136
137
138
139
140
141
142
143
144
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    edgenorm = nn.EdgeWeightNorm(norm=norm)
    norm_weight = edgenorm(g, g.edata['scalar_w'])
    if weight:
        h_out = conv(g, h, edge_weight=norm_weight)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=norm_weight)
145
    assert h_out.shape == (ndst, out_dim)
146

nv-dlasalle's avatar
nv-dlasalle committed
147
@parametrize_idtype
148
149
150
151
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
152
153
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_bi(idtype, g, norm, weight, bias, out_dim):
154
155
    # Test a pair of tensor inputs
    g = g.astype(idtype).to(F.ctx())
156
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
157

158
159
160
    # test pickle
    th.save(conv, tmp_buffer)

161
    ext_w = F.randn((5, out_dim)).to(F.ctx())
162
163
164
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
165
    h_dst = F.randn((ndst, out_dim)).to(F.ctx())
166
167
168
169
    if weight:
        h_out = conv(g, (h, h_dst))
    else:
        h_out = conv(g, (h, h_dst), weight=ext_w)
170
    assert h_out.shape == (ndst, out_dim)
171

172
173
174
175
176
177
178
179
180
181
182
183
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = th.matmul(A, X1.view(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = th.matmul(A, X2.view(X2.shape[0], -1))
    X2 = X2 * N
    X = th.cat([X, X1, X2], dim=-1)
    Y = th.matmul(X, W.rot90())

    return Y + b

184
185
@pytest.mark.parametrize('out_dim', [1, 2])
def test_tagconv(out_dim):
186
    g = dgl.DGLGraph(nx.path_graph(3))
187
    g = g.to(F.ctx())
188
    ctx = F.ctx()
189
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
190
191
    norm = th.pow(g.in_degrees().float(), -0.5)

192
    conv = nn.TAGConv(5, out_dim, bias=True)
193
    conv = conv.to(ctx)
194
    print(conv)
Mufei Li's avatar
Mufei Li committed
195

196
197
    # test pickle
    th.save(conv, tmp_buffer)
198
199
200

    # test#1: basic
    h0 = F.ones((3, 5))
201
    h1 = conv(g, h0)
202
203
204
205
206
207
208
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.dim() - 1)
    norm = th.reshape(norm, shp).to(ctx)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.weight, conv.lin.bias))

209
    conv = nn.TAGConv(5, out_dim)
210
    conv = conv.to(ctx)
211

212
213
    # test#2: basic
    h0 = F.ones((3, 5))
214
    h1 = conv(g, h0)
215
    assert h1.shape[-1] == out_dim
216

217
    # test reset_parameters
218
219
220
221
222
    old_weight = deepcopy(conv.lin.weight.data)
    conv.reset_parameters()
    new_weight = conv.lin.weight.data
    assert not F.allclose(old_weight, new_weight)

223
def test_set2set():
224
    ctx = F.ctx()
225
    g = dgl.DGLGraph(nx.path_graph(10))
226
    g = g.to(F.ctx())
227
228

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
229
    s2s = s2s.to(ctx)
230
231
232
    print(s2s)

    # test#1: basic
233
    h0 = F.randn((g.number_of_nodes(), 5))
234
    h1 = s2s(g, h0)
235
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
236
237

    # test#2: batched graph
238
239
    g1 = dgl.DGLGraph(nx.path_graph(11)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
240
    bg = dgl.batch([g, g1, g2])
241
    h0 = F.randn((bg.number_of_nodes(), 5))
242
    h1 = s2s(bg, h0)
243
244
245
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.dim() == 2

def test_glob_att_pool():
246
    ctx = F.ctx()
247
    g = dgl.DGLGraph(nx.path_graph(10))
248
    g = g.to(F.ctx())
249
250

    gap = nn.GlobalAttentionPooling(th.nn.Linear(5, 1), th.nn.Linear(5, 10))
251
    gap = gap.to(ctx)
252
253
    print(gap)

254
255
256
    # test pickle
    th.save(gap, tmp_buffer)

257
    # test#1: basic
258
    h0 = F.randn((g.number_of_nodes(), 5))
259
    h1 = gap(g, h0)
260
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
261
262
263

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
264
    h0 = F.randn((bg.number_of_nodes(), 5))
265
    h1 = gap(bg, h0)
266
267
268
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.dim() == 2

def test_simple_pool():
269
    ctx = F.ctx()
270
    g = dgl.DGLGraph(nx.path_graph(15))
271
    g = g.to(F.ctx())
272
273
274
275
276
277
278
279

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
280
    h0 = F.randn((g.number_of_nodes(), 5))
281
282
283
284
    sum_pool = sum_pool.to(ctx)
    avg_pool = avg_pool.to(ctx)
    max_pool = max_pool.to(ctx)
    sort_pool = sort_pool.to(ctx)
285
    h1 = sum_pool(g, h0)
286
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
287
    h1 = avg_pool(g, h0)
288
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
289
    h1 = max_pool(g, h0)
290
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
291
    h1 = sort_pool(g, h0)
292
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.dim() == 2
293
294

    # test#2: batched graph
295
    g_ = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
296
    bg = dgl.batch([g, g_, g, g_, g])
297
    h0 = F.randn((bg.number_of_nodes(), 5))
298
    h1 = sum_pool(bg, h0)
299
300
301
302
303
304
    truth = th.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
305

306
    h1 = avg_pool(bg, h0)
307
308
309
310
311
312
    truth = th.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
313

314
    h1 = max_pool(bg, h0)
315
316
317
318
319
320
    truth = th.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
321

322
    h1 = sort_pool(bg, h0)
323
324
325
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.dim() == 2

def test_set_trans():
326
    ctx = F.ctx()
327
328
329
330
331
    g = dgl.DGLGraph(nx.path_graph(15))

    st_enc_0 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'sab')
    st_enc_1 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'isab', 3)
    st_dec = nn.SetTransformerDecoder(50, 5, 10, 100, 2, 4)
332
333
334
    st_enc_0 = st_enc_0.to(ctx)
    st_enc_1 = st_enc_1.to(ctx)
    st_dec = st_dec.to(ctx)
335
336
337
    print(st_enc_0, st_enc_1, st_dec)

    # test#1: basic
338
    h0 = F.randn((g.number_of_nodes(), 50))
339
    h1 = st_enc_0(g, h0)
340
    assert h1.shape == h0.shape
341
    h1 = st_enc_1(g, h0)
342
    assert h1.shape == h0.shape
343
    h2 = st_dec(g, h1)
344
    assert h2.shape[0] == 1 and h2.shape[1] == 200 and h2.dim() == 2
345
346
347
348
349

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g, g1, g2])
350
    h0 = F.randn((bg.number_of_nodes(), 50))
351
    h1 = st_enc_0(bg, h0)
352
    assert h1.shape == h0.shape
353
    h1 = st_enc_1(bg, h0)
354
355
    assert h1.shape == h0.shape

356
    h2 = st_dec(bg, h1)
357
358
    assert h2.shape[0] == 3 and h2.shape[1] == 200 and h2.dim() == 2

nv-dlasalle's avatar
nv-dlasalle committed
359
@parametrize_idtype
360
361
@pytest.mark.parametrize('O', [1, 8, 32])
def test_rgcn(idtype, O):
Minjie Wang's avatar
Minjie Wang committed
362
363
    ctx = F.ctx()
    etype = []
364
365
    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.1))
    g = g.astype(idtype).to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
366
367
368
369
370
371
372
373
374
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10

    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
375
    norm = th.rand((g.number_of_edges(), 1)).to(ctx)
376
377
378
    sorted_r, idx = th.sort(r)
    sorted_g = dgl.reorder_graph(g, edge_permute_algo='custom', permute_config={'edges_perm' : idx.to(idtype)})
    sorted_norm = norm[idx]
Minjie Wang's avatar
Minjie Wang committed
379

380
381
    rgc = nn.RelGraphConv(I, O, R).to(ctx)
    th.save(rgc, tmp_buffer)  # test pickle
Minjie Wang's avatar
Minjie Wang committed
382
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
383
    th.save(rgc_basis, tmp_buffer)  # test pickle
384
385
    if O % B == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
386
        th.save(rgc_bdd, tmp_buffer)  # test pickle
387

388
389
390
391
392
    # basic usage
    h_new = rgc(g, h, r)
    assert h_new.shape == (100, O)
    h_new_basis = rgc_basis(g, h, r)
    assert h_new_basis.shape == (100, O)
393
    if O % B == 0:
394
395
396
397
398
399
400
401
402
403
404
        h_new_bdd = rgc_bdd(g, h, r)
        assert h_new_bdd.shape == (100, O)

    # sorted input
    h_new_sorted = rgc(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new, h_new_sorted, atol=1e-4, rtol=1e-4)
    h_new_basis_sorted = rgc_basis(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new_basis, h_new_basis_sorted, atol=1e-4, rtol=1e-4)
    if O % B == 0:
        h_new_bdd_sorted = rgc_bdd(sorted_g, h, sorted_r, presorted=True)
        assert th.allclose(h_new_bdd, h_new_bdd_sorted, atol=1e-4, rtol=1e-4)
405

406
407
408
    # norm input
    h_new = rgc(g, h, r, norm)
    assert h_new.shape == (100, O)
409
    h_new = rgc_basis(g, h, r, norm)
410
    assert h_new.shape == (100, O)
411
412
    if O % B == 0:
        h_new = rgc_bdd(g, h, r, norm)
413
        assert h_new.shape == (100, O)
414
415


nv-dlasalle's avatar
nv-dlasalle committed
416
@parametrize_idtype
417
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
418
@pytest.mark.parametrize('out_dim', [1, 5])
419
420
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gat_conv(g, idtype, out_dim, num_heads):
421
    g = g.astype(idtype).to(F.ctx())
422
    ctx = F.ctx()
423
    gat = nn.GATConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
424
    feat = F.randn((g.number_of_src_nodes(), 5))
425
    gat = gat.to(ctx)
426
    h = gat(g, feat)
427
428
429
430

    # test pickle
    th.save(gat, tmp_buffer)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
431
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
432
    _, a = gat(g, feat, get_attention=True)
433
    assert a.shape == (g.number_of_edges(), num_heads, 1)
434

435
436
437
438
439
    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

nv-dlasalle's avatar
nv-dlasalle committed
440
@parametrize_idtype
441
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
442
443
444
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gat_conv_bi(g, idtype, out_dim, num_heads):
445
446
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
447
    gat = nn.GATConv(5, out_dim, num_heads)
448
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
449
450
    gat = gat.to(ctx)
    h = gat(g, feat)
451
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
452
    _, a = gat(g, feat, get_attention=True)
453
    assert a.shape == (g.number_of_edges(), num_heads, 1)
454

nv-dlasalle's avatar
nv-dlasalle committed
455
@parametrize_idtype
Shaked Brody's avatar
Shaked Brody committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gatv2_conv(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
    feat = F.randn((g.number_of_src_nodes(), 5))
    gat = gat.to(ctx)
    h = gat(g, feat)

    # test pickle
    th.save(gat, tmp_buffer)

    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
    assert a.shape == (g.number_of_edges(), num_heads, 1)

    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

nv-dlasalle's avatar
nv-dlasalle committed
479
@parametrize_idtype
Shaked Brody's avatar
Shaked Brody committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gatv2_conv_bi(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
    gat = gat.to(ctx)
    h = gat(g, feat)
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
    assert a.shape == (g.number_of_edges(), num_heads, 1)

nv-dlasalle's avatar
nv-dlasalle committed
494
@parametrize_idtype
495
496
497
498
499
500
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_node_feats', [1, 5])
@pytest.mark.parametrize('out_edge_feats', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_egat_conv(g, idtype, out_node_feats, out_edge_feats, num_heads):
    g = g.astype(idtype).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
501
    ctx = F.ctx()
502
503
504
505
506
507
508
509
510
    egat = nn.EGATConv(in_node_feats=10,
                       in_edge_feats=5,
                       out_node_feats=out_node_feats,
                       out_edge_feats=out_edge_feats,
                       num_heads=num_heads)
    nfeat = F.randn((g.number_of_nodes(), 10))
    efeat = F.randn((g.number_of_edges(), 5))
    egat = egat.to(ctx)
    h, f = egat(g, nfeat, efeat)
511

512
    th.save(egat, tmp_buffer)
513

514
515
516
517
    assert h.shape == (g.number_of_nodes(), num_heads, out_node_feats)
    assert f.shape == (g.number_of_edges(), num_heads, out_edge_feats)
    _, _, attn = egat(g, nfeat, efeat, True)
    assert attn.shape == (g.number_of_edges(), num_heads, 1)
518

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
@parametrize_idtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_node_feats', [1, 5])
@pytest.mark.parametrize('out_edge_feats', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_egat_conv_bi(g, idtype, out_node_feats, out_edge_feats, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    egat = nn.EGATConv(in_node_feats=(10,15),
                       in_edge_feats=7,
                       out_node_feats=out_node_feats,
                       out_edge_feats=out_edge_feats,
                       num_heads=num_heads)
    nfeat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), 15)))
    efeat = F.randn((g.number_of_edges(), 7))
    egat = egat.to(ctx)
    h, f = egat(g, nfeat, efeat)
536

Mufei Li's avatar
Mufei Li committed
537
    th.save(egat, tmp_buffer)
538

539
540
541
542
543
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_node_feats)
    assert f.shape == (g.number_of_edges(), num_heads, out_edge_feats)
    _, _, attn = egat(g, nfeat, efeat, True)
    assert attn.shape == (g.number_of_edges(), num_heads, 1)

nv-dlasalle's avatar
nv-dlasalle committed
544
@parametrize_idtype
545
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
546
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
547
548
def test_sage_conv(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
549
    sage = nn.SAGEConv(5, 10, aggre_type)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
550
    feat = F.randn((g.number_of_src_nodes(), 5))
551
    sage = sage.to(F.ctx())
552
553
    # test pickle
    th.save(sage, tmp_buffer)
554
555
556
    h = sage(g, feat)
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
557
@parametrize_idtype
558
@pytest.mark.parametrize('g', get_cases(['bipartite']))
559
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
560
561
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sage_conv_bi(idtype, g, aggre_type, out_dim):
562
    g = g.astype(idtype).to(F.ctx())
563
    dst_dim = 5 if aggre_type != 'gcn' else 10
564
    sage = nn.SAGEConv((10, dst_dim), out_dim, aggre_type)
565
566
    feat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), dst_dim)))
    sage = sage.to(F.ctx())
567
    h = sage(g, feat)
568
    assert h.shape[-1] == out_dim
569
    assert h.shape[0] == g.number_of_dst_nodes()
570

nv-dlasalle's avatar
nv-dlasalle committed
571
@parametrize_idtype
572
573
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sage_conv2(idtype, out_dim):
574
    # TODO: add test for blocks
Mufei Li's avatar
Mufei Li committed
575
    # Test the case for graphs without edges
576
    g = dgl.heterograph({('_U', '_E', '_V'): ([], [])}, {'_U': 5, '_V': 3})
577
578
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
579
    sage = nn.SAGEConv((3, 3), out_dim, 'gcn')
Mufei Li's avatar
Mufei Li committed
580
581
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    sage = sage.to(ctx)
582
    h = sage(g, (F.copy_to(feat[0], F.ctx()), F.copy_to(feat[1], F.ctx())))
583
    assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
584
585
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
586
        sage = nn.SAGEConv((3, 1), out_dim, aggre_type)
Mufei Li's avatar
Mufei Li committed
587
588
589
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        sage = sage.to(ctx)
        h = sage(g, feat)
590
        assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
591
592
        assert h.shape[0] == 3

nv-dlasalle's avatar
nv-dlasalle committed
593
@parametrize_idtype
594
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
595
596
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sgc_conv(g, idtype, out_dim):
597
    ctx = F.ctx()
598
    g = g.astype(idtype).to(ctx)
599
    # not cached
600
    sgc = nn.SGConv(5, out_dim, 3)
601
602
603
604

    # test pickle
    th.save(sgc, tmp_buffer)

605
    feat = F.randn((g.number_of_nodes(), 5))
606
    sgc = sgc.to(ctx)
607

608
    h = sgc(g, feat)
609
    assert h.shape[-1] == out_dim
610
611

    # cached
612
    sgc = nn.SGConv(5, out_dim, 3, True)
613
    sgc = sgc.to(ctx)
614
615
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
616
    assert F.allclose(h_0, h_1)
617
    assert h_0.shape[-1] == out_dim
618

nv-dlasalle's avatar
nv-dlasalle committed
619
@parametrize_idtype
620
621
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_appnp_conv(g, idtype):
622
    ctx = F.ctx()
623
    g = g.astype(idtype).to(ctx)
624
    appnp = nn.APPNPConv(10, 0.1)
625
    feat = F.randn((g.number_of_nodes(), 5))
626
    appnp = appnp.to(ctx)
Mufei Li's avatar
Mufei Li committed
627

628
629
    # test pickle
    th.save(appnp, tmp_buffer)
630

631
    h = appnp(g, feat)
632
633
    assert h.shape[-1] == 5

634

nv-dlasalle's avatar
nv-dlasalle committed
635
@parametrize_idtype
636
637
638
639
640
641
642
643
644
645
646
647
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_appnp_conv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    appnp = nn.APPNPConv(10, 0.1)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    appnp = appnp.to(ctx)

    h = appnp(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

nv-dlasalle's avatar
nv-dlasalle committed
648
@parametrize_idtype
649
650
651
652
653
654
655
656
657
658
659
660
661
662
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_gcn2conv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    gcn2conv = nn.GCN2Conv(5, layer=2, alpha=0.5,
                           project_initial_features=True)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    gcn2conv = gcn2conv.to(ctx)
    res = feat
    h = gcn2conv(g, res, feat, edge_weight=eweight)
    assert h.shape[-1] == 5


nv-dlasalle's avatar
nv-dlasalle committed
663
@parametrize_idtype
664
665
666
667
668
669
670
671
672
673
674
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_sgconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    sgconv = nn.SGConv(5, 5, 3)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    sgconv = sgconv.to(ctx)
    h = sgconv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

nv-dlasalle's avatar
nv-dlasalle committed
675
@parametrize_idtype
676
677
678
679
680
681
682
683
684
685
686
687
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_tagconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    conv = nn.TAGConv(5, 5, bias=True)
    conv = conv.to(ctx)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    conv = conv.to(ctx)
    h = conv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

nv-dlasalle's avatar
nv-dlasalle committed
688
@parametrize_idtype
689
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
690
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
691
692
def test_gin_conv(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
693
694
695
696
697
    ctx = F.ctx()
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
VoVAllen's avatar
VoVAllen committed
698
    th.save(gin, tmp_buffer)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
699
    feat = F.randn((g.number_of_src_nodes(), 5))
700
701
    gin = gin.to(ctx)
    h = gin(g, feat)
702
703

    # test pickle
VoVAllen's avatar
VoVAllen committed
704
    th.save(gin, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
705

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
706
    assert h.shape == (g.number_of_dst_nodes(), 12)
707

Mufei Li's avatar
Mufei Li committed
708
709
710
711
    gin = nn.GINConv(None, aggregator_type)
    th.save(gin, tmp_buffer)
    gin = gin.to(ctx)
    h = gin(g, feat)
712

nv-dlasalle's avatar
nv-dlasalle committed
713
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
def test_gine_conv(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    gine = nn.GINEConv(
        th.nn.Linear(5, 12)
    )
    th.save(gine, tmp_buffer)
    nfeat = F.randn((g.number_of_src_nodes(), 5))
    efeat = F.randn((g.num_edges(), 5))
    gine = gine.to(ctx)
    h = gine(g, nfeat, efeat)

    # test pickle
    th.save(gine, tmp_buffer)
    assert h.shape == (g.number_of_dst_nodes(), 12)

    gine = nn.GINEConv(None)
    th.save(gine, tmp_buffer)
    gine = gine.to(ctx)
    h = gine(g, nfeat, efeat)

nv-dlasalle's avatar
nv-dlasalle committed
736
@parametrize_idtype
737
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
738
739
740
741
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv_bi(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
742
743
744
745
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
746
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
747
748
    gin = gin.to(ctx)
    h = gin(g, feat)
749
    assert h.shape == (g.number_of_dst_nodes(), 12)
750

nv-dlasalle's avatar
nv-dlasalle committed
751
@parametrize_idtype
752
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
753
754
def test_agnn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
755
756
    ctx = F.ctx()
    agnn = nn.AGNNConv(1)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
757
    feat = F.randn((g.number_of_src_nodes(), 5))
758
    agnn = agnn.to(ctx)
759
    h = agnn(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
760
    assert h.shape == (g.number_of_dst_nodes(), 5)
761

nv-dlasalle's avatar
nv-dlasalle committed
762
@parametrize_idtype
763
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
764
765
766
def test_agnn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
767
    agnn = nn.AGNNConv(1)
768
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
769
770
    agnn = agnn.to(ctx)
    h = agnn(g, feat)
771
    assert h.shape == (g.number_of_dst_nodes(), 5)
772

nv-dlasalle's avatar
nv-dlasalle committed
773
@parametrize_idtype
774
775
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_gated_graph_conv(g, idtype):
776
    ctx = F.ctx()
777
    g = g.astype(idtype).to(ctx)
778
779
    ggconv = nn.GatedGraphConv(5, 10, 5, 3)
    etypes = th.arange(g.number_of_edges()) % 3
780
    feat = F.randn((g.number_of_nodes(), 5))
781
782
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)
783

784
    h = ggconv(g, feat, etypes)
785
786
787
    # current we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
788
@parametrize_idtype
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_gated_graph_conv_one_etype(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    ggconv = nn.GatedGraphConv(5, 10, 5, 1)
    etypes = th.zeros(g.number_of_edges())
    feat = F.randn((g.number_of_nodes(), 5))
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)

    h = ggconv(g, feat, etypes)
    h2 = ggconv(g, feat)
    # current we only do shape check
    assert F.allclose(h, h2)
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
805
@parametrize_idtype
806
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
807
808
def test_nn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
809
810
811
    ctx = F.ctx()
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
812
    feat = F.randn((g.number_of_src_nodes(), 5))
813
814
815
816
817
818
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, feat, efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
819
@parametrize_idtype
820
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
821
822
823
def test_nn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
824
825
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv((5, 2), 10, edge_func, 'mean')
826
827
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
828
829
830
831
832
833
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, (feat, feat_dst), efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
834
@parametrize_idtype
835
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
836
837
def test_gmm_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
838
839
    ctx = F.ctx()
    gmmconv = nn.GMMConv(5, 10, 3, 4, 'mean')
840
    feat = F.randn((g.number_of_nodes(), 5))
841
    pseudo = F.randn((g.number_of_edges(), 3))
842
    gmmconv = gmmconv.to(ctx)
843
    h = gmmconv(g, feat, pseudo)
844
845
846
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
847
@parametrize_idtype
848
@pytest.mark.parametrize('g', get_cases(['bipartite', 'block-bipartite'], exclude=['zero-degree']))
849
850
851
def test_gmm_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
852
    gmmconv = nn.GMMConv((5, 2), 10, 3, 4, 'mean')
853
854
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
855
856
857
858
859
860
    pseudo = F.randn((g.number_of_edges(), 3))
    gmmconv = gmmconv.to(ctx)
    h = gmmconv(g, (feat, feat_dst), pseudo)
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
861
@parametrize_idtype
862
@pytest.mark.parametrize('norm_type', ['both', 'right', 'none'])
863
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree']))
864
865
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_graph_conv(norm_type, g, idtype, out_dim):
866
    g = g.astype(idtype).to(F.ctx())
867
    ctx = F.ctx()
868
    # TODO(minjie): enable the following option after #1385
869
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
870
871
    conv = nn.GraphConv(5, out_dim, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, out_dim, norm=norm_type, bias=True)
872
873
    dense_conv.weight.data = conv.weight.data
    dense_conv.bias.data = conv.bias.data
874
    feat = F.randn((g.number_of_src_nodes(), 5))
875
876
    conv = conv.to(ctx)
    dense_conv = dense_conv.to(ctx)
877
878
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
879
880
    assert F.allclose(out_conv, out_dense_conv)

nv-dlasalle's avatar
nv-dlasalle committed
881
@parametrize_idtype
882
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite']))
883
884
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_sage_conv(g, idtype, out_dim):
885
    g = g.astype(idtype).to(F.ctx())
886
    ctx = F.ctx()
887
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
888
889
    sage = nn.SAGEConv(5, out_dim, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, out_dim)
890
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
891
    dense_sage.fc.bias.data = sage.bias.data
892
893
894
895
896
897
898
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
            F.randn((g.number_of_dst_nodes(), 5))
        )
    else:
        feat = F.randn((g.number_of_nodes(), 5))
899
900
    sage = sage.to(ctx)
    dense_sage = dense_sage.to(ctx)
901
902
    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
903
904
    assert F.allclose(out_sage, out_dense_sage), g

nv-dlasalle's avatar
nv-dlasalle committed
905
@parametrize_idtype
906
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
907
908
@pytest.mark.parametrize('out_dim', [1, 2])
def test_edge_conv(g, idtype, out_dim):
909
    g = g.astype(idtype).to(F.ctx())
910
    ctx = F.ctx()
911
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
912
    print(edge_conv)
913
914
915

    # test pickle
    th.save(edge_conv, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
916

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
917
    h0 = F.randn((g.number_of_src_nodes(), 5))
918
    h1 = edge_conv(g, h0)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
919
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
920

nv-dlasalle's avatar
nv-dlasalle committed
921
@parametrize_idtype
922
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
923
924
@pytest.mark.parametrize('out_dim', [1, 2])
def test_edge_conv_bi(g, idtype, out_dim):
925
926
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
927
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
928
    print(edge_conv)
929
    h0 = F.randn((g.number_of_src_nodes(), 5))
930
931
    x0 = F.randn((g.number_of_dst_nodes(), 5))
    h1 = edge_conv(g, (h0, x0))
932
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
Mufei Li's avatar
Mufei Li committed
933

nv-dlasalle's avatar
nv-dlasalle committed
934
@parametrize_idtype
935
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
936
937
938
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_dotgat_conv(g, idtype, out_dim, num_heads):
939
940
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
941
    dotgat = nn.DotGatConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
942
    feat = F.randn((g.number_of_src_nodes(), 5))
943
    dotgat = dotgat.to(ctx)
Mufei Li's avatar
Mufei Li committed
944

945
946
    # test pickle
    th.save(dotgat, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
947

948
    h = dotgat(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
949
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
950
    _, a = dotgat(g, feat, get_attention=True)
951
    assert a.shape == (g.number_of_edges(), num_heads, 1)
952

nv-dlasalle's avatar
nv-dlasalle committed
953
@parametrize_idtype
954
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
955
956
957
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_dotgat_conv_bi(g, idtype, out_dim, num_heads):
958
959
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
960
    dotgat = nn.DotGatConv((5, 5), out_dim, num_heads)
961
962
963
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
    dotgat = dotgat.to(ctx)
    h = dotgat(g, feat)
964
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
965
    _, a = dotgat(g, feat, get_attention=True)
966
    assert a.shape == (g.number_of_edges(), num_heads, 1)
967

968
969
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_cheb_conv(out_dim):
970
971
972
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
973
        g = g.to(F.ctx())
974
        adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
975
976
        cheb = nn.ChebConv(5, out_dim, k, None)
        dense_cheb = nn.DenseChebConv(5, out_dim, k)
Axel Nilsson's avatar
Axel Nilsson committed
977
978
        #for i in range(len(cheb.fc)):
        #    dense_cheb.W.data[i] = cheb.fc[i].weight.data.t()
979
        dense_cheb.W.data = cheb.linear.weight.data.transpose(-1, -2).view(k, 5, out_dim)
Axel Nilsson's avatar
Axel Nilsson committed
980
981
        if cheb.linear.bias is not None:
            dense_cheb.bias.data = cheb.linear.bias.data
982
        feat = F.randn((100, 5))
983
984
        cheb = cheb.to(ctx)
        dense_cheb = dense_cheb.to(ctx)
985
986
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
Axel Nilsson's avatar
Axel Nilsson committed
987
        print(k, out_cheb, out_dense_cheb)
988
989
        assert F.allclose(out_cheb, out_dense_cheb)

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
def test_sequential():
    ctx = F.ctx()
    # Test single graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
1009
    g = g.to(F.ctx())
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    net = net.to(ctx)
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # Test multiple graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.view(graph.number_of_nodes() // 2, 2, -1).sum(1)

1030
1031
1032
    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2)).to(F.ctx())
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8)).to(F.ctx())
1033
1034
1035
1036
1037
1038
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    net = net.to(ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

nv-dlasalle's avatar
nv-dlasalle committed
1039
@parametrize_idtype
1040
1041
1042
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_atomic_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
1043
1044
1045
1046
1047
1048
1049
1050
1051
    aconv = nn.AtomicConv(interaction_cutoffs=F.tensor([12.0, 12.0]),
                          rbf_kernel_means=F.tensor([0.0, 2.0]),
                          rbf_kernel_scaling=F.tensor([4.0, 4.0]),
                          features_to_use=F.tensor([6.0, 8.0]))

    ctx = F.ctx()
    if F.gpu_ctx():
        aconv = aconv.to(ctx)

1052
    feat = F.randn((g.number_of_nodes(), 1))
1053
1054
1055
    dist = F.randn((g.number_of_edges(), 1))

    h = aconv(g, feat, dist)
1056

1057
1058
1059
    # current we only do shape check
    assert h.shape[-1] == 4

nv-dlasalle's avatar
nv-dlasalle committed
1060
@parametrize_idtype
1061
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree']))
1062
1063
@pytest.mark.parametrize('out_dim', [1, 3])
def test_cf_conv(g, idtype, out_dim):
1064
    g = g.astype(idtype).to(F.ctx())
1065
1066
1067
    cfconv = nn.CFConv(node_in_feats=2,
                       edge_in_feats=3,
                       hidden_feats=2,
1068
                       out_feats=out_dim)
1069
1070
1071
1072
1073

    ctx = F.ctx()
    if F.gpu_ctx():
        cfconv = cfconv.to(ctx)

1074
    src_feats = F.randn((g.number_of_src_nodes(), 2))
1075
    edge_feats = F.randn((g.number_of_edges(), 3))
1076
1077
1078
1079
1080
1081
1082
    h = cfconv(g, src_feats, edge_feats)
    # current we only do shape check
    assert h.shape[-1] == out_dim

    # case for bipartite graphs
    dst_feats = F.randn((g.number_of_dst_nodes(), 3))
    h = cfconv(g, (src_feats, dst_feats), edge_feats)
1083
    # current we only do shape check
1084
    assert h.shape[-1] == out_dim
1085

1086
1087
1088
1089
1090
1091
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

nv-dlasalle's avatar
nv-dlasalle committed
1092
@parametrize_idtype
1093
@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
1094
def test_hetero_conv(agg, idtype):
1095
    g = dgl.heterograph({
1096
1097
1098
        ('user', 'follows', 'user'): ([0, 0, 2, 1], [1, 2, 1, 3]),
        ('user', 'plays', 'game'): ([0, 0, 0, 1, 2], [0, 2, 3, 0, 2]),
        ('store', 'sells', 'game'): ([0, 0, 1, 1], [0, 3, 1, 2])},
1099
        idtype=idtype, device=F.ctx())
1100
    conv = nn.HeteroGraphConv({
1101
1102
1103
        'follows': nn.GraphConv(2, 3, allow_zero_in_degree=True),
        'plays': nn.GraphConv(2, 4, allow_zero_in_degree=True),
        'sells': nn.GraphConv(3, 4, allow_zero_in_degree=True)},
1104
        agg)
1105
    conv = conv.to(F.ctx())
1106
1107
1108
1109

    # test pickle
    th.save(conv, tmp_buffer)

1110
1111
1112
1113
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))

1114
    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
1115
1116
1117
1118
1119
1120
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
1121
        assert h['game'].shape == (4, 2, 4)
1122

1123
1124
    block = dgl.to_block(g.to(F.cpu()), {'user': [0, 1, 2, 3], 'game': [0, 1, 2, 3], 'store': []}).to(F.ctx())
    h = conv(block, ({'user': uf, 'game': gf, 'store': sf}, {'user': uf, 'game': gf, 'store': sf[0:0]}))
1125
1126
1127
1128
1129
1130
1131
1132
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

1133
    h = conv(block, {'user': uf, 'game': gf, 'store': sf})
1134
1135
1136
1137
1138
1139
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
1140
        assert h['game'].shape == (4, 2, 4)
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

    # test with mod args
    class MyMod(th.nn.Module):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return th.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
1164
    conv = conv.to(F.ctx())
1165
1166
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
1167
    h = conv(g, {'user' : uf, 'game': gf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
1168
1169
1170
1171
1172
1173
1174
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    #conv on graph without any edges
    for etype in g.etypes:
        g = dgl.remove_edges(g, g.edges(form='eid', etype=etype), etype=etype)
    assert g.num_edges() == 0
    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}

    block = dgl.to_block(g.to(F.cpu()), {'user': [0, 1, 2, 3], 'game': [
                         0, 1, 2, 3], 'store': []}).to(F.ctx())
    h = conv(block, ({'user': uf, 'game': gf, 'store': sf},
             {'user': uf, 'game': gf, 'store': sf[0:0]}))
    assert set(h.keys()) == {'user', 'game'}

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
@pytest.mark.parametrize('out_dim', [1, 2, 100])
def test_hetero_linear(out_dim):
    in_feats = {
        'user': F.randn((2, 1)),
        ('user', 'follows', 'user'): F.randn((3, 2))
    }

    layer = nn.HeteroLinear({'user': 1, ('user', 'follows', 'user'): 2}, out_dim)
    layer = layer.to(F.ctx())
    out_feats = layer(in_feats)
    assert out_feats['user'].shape == (2, out_dim)
    assert out_feats[('user', 'follows', 'user')].shape == (3, out_dim)

@pytest.mark.parametrize('out_dim', [1, 2, 100])
def test_hetero_embedding(out_dim):
    layer = nn.HeteroEmbedding({'user': 2, ('user', 'follows', 'user'): 3}, out_dim)
    layer = layer.to(F.ctx())

    embeds = layer.weight
    assert embeds['user'].shape == (2, out_dim)
    assert embeds[('user', 'follows', 'user')].shape == (3, out_dim)

    embeds = layer({
        'user': F.tensor([0], dtype=F.int64),
        ('user', 'follows', 'user'): F.tensor([0, 2], dtype=F.int64)
    })
    assert embeds['user'].shape == (1, out_dim)
    assert embeds[('user', 'follows', 'user')].shape == (2, out_dim)

nv-dlasalle's avatar
nv-dlasalle committed
1217
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 2])
def test_gnnexplainer(g, idtype, out_dim):
    g = g.astype(idtype).to(F.ctx())
    feat = F.randn((g.num_nodes(), 5))

    class Model(th.nn.Module):
        def __init__(self, in_feats, out_feats, graph=False):
            super(Model, self).__init__()
            self.linear = th.nn.Linear(in_feats, out_feats)
            if graph:
                self.pool = nn.AvgPooling()
            else:
                self.pool = None

        def forward(self, graph, feat, eweight=None):
            with graph.local_scope():
                feat = self.linear(feat)
                graph.ndata['h'] = feat
                if eweight is None:
                    graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
                else:
                    graph.edata['w'] = eweight
                    graph.update_all(fn.u_mul_e('h', 'w', 'm'), fn.sum('m', 'h'))

                if self.pool:
                    return self.pool(graph, graph.ndata['h'])
                else:
                    return graph.ndata['h']

    # Explain node prediction
    model = Model(5, out_dim)
    model = model.to(F.ctx())
    explainer = nn.GNNExplainer(model, num_hops=1)
    new_center, sg, feat_mask, edge_mask = explainer.explain_node(0, g, feat)

    # Explain graph prediction
    model = Model(5, out_dim, graph=True)
    model = model.to(F.ctx())
    explainer = nn.GNNExplainer(model, num_hops=1)
    feat_mask, edge_mask = explainer.explain_graph(g, feat)

Mufei Li's avatar
Mufei Li committed
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
def test_jumping_knowledge():
    ctx = F.ctx()
    num_layers = 2
    num_nodes = 3
    num_feats = 4

    feat_list = [th.randn((num_nodes, num_feats)).to(ctx) for _ in range(num_layers)]

    model = nn.JumpingKnowledge('cat').to(ctx)
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_layers * num_feats)

    model = nn.JumpingKnowledge('max').to(ctx)
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_feats)

    model = nn.JumpingKnowledge('lstm', num_feats, num_layers).to(ctx)
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_feats)

Mufei Li's avatar
Mufei Li committed
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
@pytest.mark.parametrize('op', ['dot', 'cos', 'ele', 'cat'])
def test_edge_predictor(op):
    ctx = F.ctx()
    num_pairs = 3
    in_feats = 4
    out_feats = 5
    h_src = th.randn((num_pairs, in_feats)).to(ctx)
    h_dst = th.randn((num_pairs, in_feats)).to(ctx)

    pred = nn.EdgePredictor(op)
    if op in ['dot', 'cos']:
        assert pred(h_src, h_dst).shape == (num_pairs, 1)
    elif op == 'ele':
        assert pred(h_src, h_dst).shape == (num_pairs, in_feats)
    else:
        assert pred(h_src, h_dst).shape == (num_pairs, 2 * in_feats)
    pred = nn.EdgePredictor(op, in_feats, out_feats, bias=True).to(ctx)
    assert pred(h_src, h_dst).shape == (num_pairs, out_feats)

Mufei Li's avatar
Mufei Li committed
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318

def test_ke_score_funcs():
    ctx = F.ctx()
    num_edges = 30
    num_rels = 3
    nfeats = 4

    h_src = th.randn((num_edges, nfeats)).to(ctx)
    h_dst = th.randn((num_edges, nfeats)).to(ctx)
    rels = th.randint(low=0, high=num_rels, size=(num_edges,)).to(ctx)

    score_func = nn.TransE(num_rels=num_rels, feats=nfeats).to(ctx)
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)

    score_func = nn.TransR(num_rels=num_rels, rfeats=nfeats - 1, nfeats=nfeats).to(ctx)
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)


1319
def test_twirls():
1320
1321
1322
1323
1324
    g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3]))
    feat = th.ones(6, 10)
    conv = nn.TWIRLSConv(10, 2, 128, prop_step = 64)
    res = conv(g , feat)
    assert ( res.size() == (6,2) )
1325

1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
@pytest.mark.parametrize('feat_size', [4, 32])
@pytest.mark.parametrize('regularizer,num_bases', [(None, None), ('basis', 4), ('bdd', 4)])
def test_typed_linear(feat_size, regularizer, num_bases):
    dev = F.ctx()
    num_types = 5
    lin = nn.TypedLinear(feat_size, feat_size * 2, 5, regularizer=regularizer, num_bases=num_bases).to(dev)
    print(lin)
    x = th.randn(100, feat_size).to(dev)
    x_type = th.randint(0, 5, (100,)).to(dev)
    x_type_sorted, idx = th.sort(x_type)
    _, rev_idx = th.sort(idx)
    x_sorted = x[idx]

    # test unsorted
    y = lin(x, x_type)
    assert y.shape == (100, feat_size * 2)
    # test sorted
    y_sorted = lin(x_sorted, x_type_sorted, sorted_by_type=True)
    assert y_sorted.shape == (100, feat_size * 2)

    assert th.allclose(y, y_sorted[rev_idx], atol=1e-4, rtol=1e-4)
1347

nv-dlasalle's avatar
nv-dlasalle committed
1348
@parametrize_idtype
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
@pytest.mark.parametrize('in_size', [4])
@pytest.mark.parametrize('num_heads', [1])
def test_hgt(idtype, in_size, num_heads):
    dev = F.ctx()
    num_etypes = 5
    num_ntypes = 2
    head_size = in_size // num_heads

    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.01))
    g = g.astype(idtype).to(dev)
    etype = th.tensor([i % num_etypes for i in range(g.num_edges())]).to(dev)
    ntype = th.tensor([i % num_ntypes for i in range(g.num_nodes())]).to(dev)
    x = th.randn(g.num_nodes(), in_size).to(dev)
1362

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
    m = nn.HGTConv(in_size, head_size, num_heads, num_ntypes, num_etypes).to(dev)

    y = m(g, x, ntype, etype)
    assert y.shape == (g.num_nodes(), head_size * num_heads)
    # presorted
    sorted_ntype, idx_nt = th.sort(ntype)
    sorted_etype, idx_et = th.sort(etype)
    _, rev_idx = th.sort(idx_nt)
    g.ndata['t'] = ntype
    g.ndata['x'] = x
    g.edata['t'] = etype
    sorted_g = dgl.reorder_graph(g, node_permute_algo='custom', edge_permute_algo='custom',
                                 permute_config={'nodes_perm' : idx_nt.to(idtype), 'edges_perm' : idx_et.to(idtype)})
    print(sorted_g.ndata['t'])
    print(sorted_g.edata['t'])
    sorted_x = sorted_g.ndata['x']
    sorted_y = m(sorted_g, sorted_x, sorted_ntype, sorted_etype, presorted=False)
    assert sorted_y.shape == (g.num_nodes(), head_size * num_heads)
    # TODO(minjie): enable the following check
    #assert th.allclose(y, sorted_y[rev_idx], atol=1e-4, rtol=1e-4)
1383

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
@pytest.mark.parametrize('self_loop', [True, False])
@pytest.mark.parametrize('get_distances', [True, False])
def test_radius_graph(self_loop, get_distances):
    pos = th.tensor([[0.1, 0.3, 0.4],
                     [0.5, 0.2, 0.1],
                     [0.7, 0.9, 0.5],
                     [0.3, 0.2, 0.5],
                     [0.2, 0.8, 0.2],
                     [0.9, 0.2, 0.1],
                     [0.7, 0.4, 0.4],
                     [0.2, 0.1, 0.6],
                     [0.5, 0.3, 0.5],
                     [0.4, 0.2, 0.6]])

    rg = nn.RadiusGraph(0.3, self_loop=self_loop)

    if get_distances:
        g, dists = rg(pos, get_distances=get_distances)
    else:
        g = rg(pos)

    if self_loop:
        src_target = th.tensor([0, 0, 1, 2, 3, 3, 3, 3, 3, 4, 5, 6, 6, 7, 7, 7,
                                8, 8, 8, 8, 9, 9, 9, 9])
        dst_target = th.tensor([0, 3, 1, 2, 0, 3, 7, 8, 9, 4, 5, 6, 8, 3, 7, 9,
                                3, 6, 8, 9, 3, 7, 8, 9])

        if get_distances:
            dists_target = th.tensor([[0.0000],
                                      [0.2449],
                                      [0.0000],
                                      [0.0000],
                                      [0.2449],
                                      [0.0000],
                                      [0.1732],
                                      [0.2236],
                                      [0.1414],
                                      [0.0000],
                                      [0.0000],
                                      [0.0000],
                                      [0.2449],
                                      [0.1732],
                                      [0.0000],
                                      [0.2236],
                                      [0.2236],
                                      [0.2449],
                                      [0.0000],
                                      [0.1732],
                                      [0.1414],
                                      [0.2236],
                                      [0.1732],
                                      [0.0000]])
    else:
        src_target = th.tensor([0, 3, 3, 3, 3, 6, 7, 7, 8, 8, 8, 9, 9, 9])
        dst_target = th.tensor([3, 0, 7, 8, 9, 8, 3, 9, 3, 6, 9, 3, 7, 8])

        if get_distances:
            dists_target = th.tensor([[0.2449],
                                      [0.2449],
                                      [0.1732],
                                      [0.2236],
                                      [0.1414],
                                      [0.2449],
                                      [0.1732],
                                      [0.2236],
                                      [0.2236],
                                      [0.2449],
                                      [0.1732],
                                      [0.1414],
                                      [0.2236],
                                      [0.1732]])

    src, dst = g.edges()

    assert th.equal(src, src_target)
    assert th.equal(dst, dst_target)

    if get_distances:
        assert th.allclose(dists, dists_target, rtol=1e-03)

nv-dlasalle's avatar
nv-dlasalle committed
1464
@parametrize_idtype
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
def test_group_rev_res(idtype):
    dev = F.ctx()

    num_nodes = 5
    num_edges = 20
    feats = 32
    groups = 2
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, feats).to(dev)
    conv = nn.GraphConv(feats // groups, feats // groups)
    model = nn.GroupRevRes(conv, groups).to(dev)
1476
1477
    result = model(g, h)
    result.sum().backward()
rudongyu's avatar
rudongyu committed
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495

@pytest.mark.parametrize('in_size', [16, 32])
@pytest.mark.parametrize('hidden_size', [16, 32])
@pytest.mark.parametrize('out_size', [16, 32])
@pytest.mark.parametrize('edge_feat_size', [16, 10, 0])
def test_egnn_conv(in_size, hidden_size, out_size, edge_feat_size):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    x = th.randn(num_nodes, 3).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    model = nn.EGNNConv(in_size, hidden_size, out_size, edge_feat_size).to(dev)
    model(g, h, x, e)

@pytest.mark.parametrize('in_size', [16, 32])
@pytest.mark.parametrize('out_size', [16, 32])
Mufei Li's avatar
Mufei Li committed
1496
@pytest.mark.parametrize('aggregators',
rudongyu's avatar
rudongyu committed
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
    [['mean', 'max', 'sum'], ['min', 'std', 'var'], ['moment3', 'moment4', 'moment5']])
@pytest.mark.parametrize('scalers', [['identity'], ['amplification', 'attenuation']])
@pytest.mark.parametrize('delta', [2.5, 7.4])
@pytest.mark.parametrize('dropout', [0., 0.1])
@pytest.mark.parametrize('num_towers', [1, 4])
@pytest.mark.parametrize('edge_feat_size', [16, 0])
@pytest.mark.parametrize('residual', [True, False])
def test_pna_conv(in_size, out_size, aggregators, scalers, delta,
    dropout, num_towers, edge_feat_size, residual):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    model = nn.PNAConv(in_size, out_size, aggregators, scalers, delta, dropout,
        num_towers, edge_feat_size, residual).to(dev)
    model(g, h, edge_feat=e)
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564

@pytest.mark.parametrize('k', [3, 5])
@pytest.mark.parametrize('alpha', [0., 0.5, 1.])
@pytest.mark.parametrize('norm_type', ['sym', 'row'])
@pytest.mark.parametrize('clamp', [True, False])
@pytest.mark.parametrize('normalize', [True, False])
@pytest.mark.parametrize('reset', [True, False])
def test_label_prop(k, alpha, norm_type, clamp, normalize, reset):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    num_classes = 4
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    labels = th.tensor([0, 2, 1, 3, 0]).long().to(dev)
    ml_labels = th.rand(num_nodes, num_classes).to(dev) > 0.7
    mask = th.tensor([0, 1, 1, 1, 0]).bool().to(dev)
    model = nn.LabelPropagation(k, alpha, norm_type, clamp, normalize, reset)
    model(g, labels, mask)
    # multi-label case
    model(g, ml_labels, mask)

@pytest.mark.parametrize('in_size', [16, 32])
@pytest.mark.parametrize('out_size', [16, 32])
@pytest.mark.parametrize('aggregators',
    [['mean', 'max', 'dir2-av'], ['min', 'std', 'dir1-dx'], ['moment3', 'moment4', 'dir3-av']])
@pytest.mark.parametrize('scalers', [['identity'], ['amplification', 'attenuation']])
@pytest.mark.parametrize('delta', [2.5, 7.4])
@pytest.mark.parametrize('dropout', [0., 0.1])
@pytest.mark.parametrize('num_towers', [1, 4])
@pytest.mark.parametrize('edge_feat_size', [16, 0])
@pytest.mark.parametrize('residual', [True, False])
def test_dgn_conv(in_size, out_size, aggregators, scalers, delta,
    dropout, num_towers, edge_feat_size, residual):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    transform = dgl.LaplacianPE(k=3, feat_name='eig')
    g = transform(g)
    eig = g.ndata['eig']
    model = nn.DGNConv(in_size, out_size, aggregators, scalers, delta, dropout,
        num_towers, edge_feat_size, residual).to(dev)
    model(g, h, edge_feat=e, eig_vec=eig)

    aggregators_non_eig = [aggr for aggr in aggregators if not aggr.startswith('dir')]
    model = nn.DGNConv(in_size, out_size, aggregators_non_eig, scalers, delta, dropout,
        num_towers, edge_feat_size, residual).to(dev)
    model(g, h, edge_feat=e)