parallel.py 1.54 KB
Newer Older
Zihao Ye's avatar
Zihao Ye committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Mostly then same with PyTorch 
import threading
import torch

def get_a_var(obj):
    if isinstance(obj, torch.Tensor):
        return obj

    if isinstance(obj, list) or isinstance(obj, tuple):
        for result in map(get_a_var, obj):
            if isinstance(result, torch.Tensor):
                return result
    if isinstance(obj, dict):
        for result in map(get_a_var, obj.items()):
            if isinstance(result, torch.Tensor):
                return result
    return None


def parallel_apply(modules, inputs):
    assert len(modules) == len(inputs)
    lock = threading.Lock()
    results = {}
    grad_enabled = torch.is_grad_enabled()

    def _worker(i, module, input):
        torch.set_grad_enabled(grad_enabled)
        try:
            #with torch.cuda.device(device):
            output = module(input)
            with lock:
                results[i] = output
        except Exception as e:
            with lock:
                results[i] = e

    if len(modules) > 1:
        threads = [threading.Thread(target=_worker,
                                    args=(i, module, input))
                   for i, (module, input) in
                   enumerate(zip(modules, inputs))]

        for thread in threads:
            thread.start()
        for thread in threads:
            thread.join()
    else:
        _worker(0, modules[0], inputs[0])

    outputs = []
    for i in range(len(inputs)):
        output = results[i]
        if isinstance(output, Exception):
            raise output
        outputs.append(output)
    return outputs