# Mostly then same with PyTorch import threading import torch def get_a_var(obj): if isinstance(obj, torch.Tensor): return obj if isinstance(obj, list) or isinstance(obj, tuple): for result in map(get_a_var, obj): if isinstance(result, torch.Tensor): return result if isinstance(obj, dict): for result in map(get_a_var, obj.items()): if isinstance(result, torch.Tensor): return result return None def parallel_apply(modules, inputs): assert len(modules) == len(inputs) lock = threading.Lock() results = {} grad_enabled = torch.is_grad_enabled() def _worker(i, module, input): torch.set_grad_enabled(grad_enabled) try: #with torch.cuda.device(device): output = module(input) with lock: results[i] = output except Exception as e: with lock: results[i] = e if len(modules) > 1: threads = [threading.Thread(target=_worker, args=(i, module, input)) for i, (module, input) in enumerate(zip(modules, inputs))] for thread in threads: thread.start() for thread in threads: thread.join() else: _worker(0, modules[0], inputs[0]) outputs = [] for i in range(len(inputs)): output = results[i] if isinstance(output, Exception): raise output outputs.append(output) return outputs