index.rst 5.8 KB
Newer Older
1
2
Install and Setup
=================
Minjie Wang's avatar
Minjie Wang committed
3

Gan Quan's avatar
Gan Quan committed
4
5
System requirements
-------------------
6
DGL works with the following operating systems:
Gan Quan's avatar
Gan Quan committed
7
8
9

* Ubuntu 16.04
* macOS X
10
* Windows 10
Gan Quan's avatar
Gan Quan committed
11

12
DGL requires Python version 3.6, 3.7, 3.8 or 3.9.
Gan Quan's avatar
Gan Quan committed
13

14
DGL supports multiple tensor libraries as backends, e.g., PyTorch, MXNet. For requirements on backends and how to select one, see :ref:`backends`.
Gan Quan's avatar
Gan Quan committed
15

16
17
18
Starting at version 0.3, DGL is separated into CPU and CUDA builds.  The builds share the
same Python package name. If you install DGL with a CUDA 9 build after you install the
CPU build, then the CPU build is overwritten.
19

Minjie Wang's avatar
Minjie Wang committed
20
21
Install from Conda or Pip
-------------------------
22

23
24
We recommend installing DGL by ``conda`` or ``pip``.
Check out the instructions on the `Get Started page <https://www.dgl.ai/pages/start.html>`_.
Gan Quan's avatar
Gan Quan committed
25

26
27
28
29
.. note::

   For Windows users: you will need to install `Visual C++ 2015 Redistributable <https://www.microsoft.com/en-us/download/details.aspx?id=48145>`_.

30
31
.. _install-from-source:

Gan Quan's avatar
Gan Quan committed
32
33
Install from source
-------------------
34
Download the source files from GitHub.
Gan Quan's avatar
Gan Quan committed
35
36

.. code:: bash
Minjie Wang's avatar
Minjie Wang committed
37

38
   git clone --recurse-submodules https://github.com/dmlc/dgl.git
Minjie Wang's avatar
Minjie Wang committed
39

40
(Optional) Clone the repository first, and then run the following:
Minjie Wang's avatar
Minjie Wang committed
41
42
43

.. code:: bash

44
   git submodule update --init --recursive
Gan Quan's avatar
Gan Quan committed
45
46
47

Linux
`````
Minjie Wang's avatar
Minjie Wang committed
48

49
Install the system packages for building the shared library. For Debian and Ubuntu
Gan Quan's avatar
Gan Quan committed
50
users, run:
Minjie Wang's avatar
Minjie Wang committed
51
52
53

.. code:: bash

Gan Quan's avatar
Gan Quan committed
54
   sudo apt-get update
Da Zheng's avatar
Da Zheng committed
55
   sudo apt-get install -y build-essential python3-dev make cmake
Minjie Wang's avatar
Minjie Wang committed
56

Gan Quan's avatar
Gan Quan committed
57
For Fedora/RHEL/CentOS users, run:
Minjie Wang's avatar
Minjie Wang committed
58

Gan Quan's avatar
Gan Quan committed
59
60
61
.. code:: bash

   sudo yum install -y gcc-c++ python3-devel make cmake
Minjie Wang's avatar
Minjie Wang committed
62

63
Create conda environment for development, run:
64

65
66
67
.. code:: bash

   bash script/create_dev_conda_env.sh -h
68

69
Build the shared library, run:
70

71
.. code:: bash
72

73
   bash script/build_dgl.sh -h
74
75

Finally, install the Python binding.
Minjie Wang's avatar
Minjie Wang committed
76
77
78

.. code:: bash

Gan Quan's avatar
Gan Quan committed
79
80
81
82
83
84
   cd ../python
   python setup.py install

macOS
`````

85
Installation on macOS is similar to Linux. But macOS users need to install build tools like clang, GNU Make, and cmake first. These installation steps were tested on macOS X with clang 10.0.0, GNU Make 3.81, and cmake 3.13.1.
Minjie Wang's avatar
Minjie Wang committed
86

Gan Quan's avatar
Gan Quan committed
87
Tools like clang and GNU Make are packaged in **Command Line Tools** for macOS. To
88
install, run the following:
Minjie Wang's avatar
Minjie Wang committed
89
90
91

.. code:: bash

Gan Quan's avatar
Gan Quan committed
92
   xcode-select --install
Minjie Wang's avatar
Minjie Wang committed
93

Gan Quan's avatar
Gan Quan committed
94
To install other needed packages like cmake, we recommend first installing
95
**Homebrew**, which is a popular package manager for macOS. To learn more, see the `Homebrew website <https://brew.sh/>`_.
Gan Quan's avatar
Gan Quan committed
96

97
After you install Homebrew, install cmake.
Minjie Wang's avatar
Minjie Wang committed
98
99
100

.. code:: bash

Gan Quan's avatar
Gan Quan committed
101
   brew install cmake
Minjie Wang's avatar
Minjie Wang committed
102

103
104
Go to root directory of the DGL repository, build a shared library, and
install the Python binding for DGL.
Gan Quan's avatar
Gan Quan committed
105
106

.. code:: bash
Minjie Wang's avatar
Minjie Wang committed
107

Gan Quan's avatar
Gan Quan committed
108
109
   mkdir build
   cd build
110
   cmake -DUSE_OPENMP=off -DCMAKE_C_FLAGS='-DXBYAK_DONT_USE_MAP_JIT' -DCMAKE_CXX_FLAGS='-DXBYAK_DONT_USE_MAP_JIT' -DUSE_LIBXSMM=OFF ..
Gan Quan's avatar
Gan Quan committed
111
112
113
   make -j4
   cd ../python
   python setup.py install
Minjie Wang's avatar
Minjie Wang committed
114

Gan Quan's avatar
Gan Quan committed
115
116
Windows
```````
Minjie Wang's avatar
Minjie Wang committed
117

118
119
120
You can build DGL with MSBuild.  With `MS Build Tools <https://go.microsoft.com/fwlink/?linkid=840931>`_
and `CMake on Windows <https://cmake.org/download/>`_ installed, run the following
in VS2019 x64 Native tools command prompt.
Gan Quan's avatar
Gan Quan committed
121

122
* CPU only build::
Gan Quan's avatar
Gan Quan committed
123

124
125
126
127
128
129
     MD build
     CD build
     cmake -DCMAKE_CXX_FLAGS="/DDGL_EXPORTS" -DCMAKE_CONFIGURATION_TYPES="Release" -DDMLC_FORCE_SHARED_CRT=ON .. -G "Visual Studio 16 2019"
     msbuild dgl.sln /m
     CD ..\python
     python setup.py install
130
131

* CUDA build::
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
132

133
134
135
136
137
138
     MD build
     CD build
     cmake -DCMAKE_CXX_FLAGS="/DDGL_EXPORTS" -DCMAKE_CONFIGURATION_TYPES="Release" -DDMLC_FORCE_SHARED_CRT=ON -DUSE_CUDA=ON .. -G "Visual Studio 16 2019"
     msbuild dgl.sln /m
     CD ..\python
     python setup.py install
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
Compilation Flags
`````````````````

See `config.cmake <https://github.com/dmlc/dgl/blob/master/cmake/config.cmake>`_.


.. _backends:

Working with different backends
-------------------------------

DGL supports PyTorch, MXNet and Tensorflow backends. 
DGL will choose the backend on the following options (high priority to low priority)

* Use the ``DGLBACKEND`` environment variable:

   - You can use ``DGLBACKEND=[BACKEND] python gcn.py ...`` to specify the backend
   - Or ``export DGLBACKEND=[BACKEND]`` to set the global environment variable 

* Modify the ``config.json`` file under "~/.dgl":

   - You can use ``python -m dgl.backend.set_default_backend [BACKEND]`` to set the default backend

Currently BACKEND can be chosen from mxnet, pytorch, tensorflow.

PyTorch backend
```````````````

Export ``DGLBACKEND`` as ``pytorch`` to specify PyTorch backend. The required PyTorch
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
169
version is 1.12.0 or later. See `pytorch.org <https://pytorch.org>`_ for installation instructions.
170
171
172
173
174

MXNet backend
`````````````

Export ``DGLBACKEND`` as ``mxnet`` to specify MXNet backend. The required MXNet version is
175
1.6 or later. See `mxnet.apache.org <https://mxnet.apache.org/get_started>`_ for installation
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
instructions.

MXNet uses uint32 as the default data type for integer tensors, which only supports graph of
size smaller than 2^32. To enable large graph training, *build* MXNet with ``USE_INT64_TENSOR_SIZE=1``
flag. See `this FAQ <https://mxnet.apache.org/api/faq/large_tensor_support>`_ for more information.

MXNet 1.5 and later has an option to enable Numpy shape mode for ``NDArray`` objects, some DGL models
need this mode to be enabled to run correctly. However, this mode may not compatible with pretrained
model parameters with this mode disabled, e.g. pretrained models from GluonCV and GluonNLP.
By setting ``DGL_MXNET_SET_NP_SHAPE``, users can switch this mode on or off.

Tensorflow backend
``````````````````

Export ``DGLBACKEND`` as ``tensorflow`` to specify Tensorflow backend. The required Tensorflow
191
version is 2.3.0 or later. See `tensorflow.org <https://www.tensorflow.org/install>`_ for installation
192
193
instructions. In addition, DGL will set ``TF_FORCE_GPU_ALLOW_GROWTH`` to ``true`` to prevent Tensorflow take over the whole GPU memory: