test_property_prediction.py 13.6 KB
Newer Older
1
2
import dgl
import torch
3
import torch.nn as nn
4
import torch.nn.functional as F
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

from dgl import DGLGraph

from dgllife.model.model_zoo import *

def test_graph1():
    """Graph with node features."""
    g = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g, torch.arange(g.number_of_nodes()).float().reshape(-1, 1)

def test_graph2():
    """Batched graph with node features."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.arange(bg.number_of_nodes()).float().reshape(-1, 1)

def test_graph3():
    """Graph with node features and edge features."""
    g = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g, torch.arange(g.number_of_nodes()).float().reshape(-1, 1), \
           torch.arange(2 * g.number_of_edges()).float().reshape(-1, 2)

def test_graph4():
    """Batched graph with node features and edge features."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.arange(bg.number_of_nodes()).float().reshape(-1, 1), \
           torch.arange(2 * bg.number_of_edges()).float().reshape(-1, 2)

def test_graph5():
    """Graph with node types and edge distances."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g1, torch.LongTensor([0, 1, 0]), torch.randn(3, 1)

def test_graph6():
    """Batched graph with node types and edge distances."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.LongTensor([0, 1, 0, 2, 0, 3, 4, 4]), torch.randn(7, 1)

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def test_graph7():
    """Graph with categorical node and edge features."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g1, torch.LongTensor([0, 1, 0]), torch.LongTensor([2, 3, 4]), \
           torch.LongTensor([0, 0, 1]), torch.LongTensor([2, 3, 2])

def test_graph8():
    """Batched graph with categorical node and edge features."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.LongTensor([0, 1, 0, 2, 1, 0, 2, 2]), \
           torch.LongTensor([2, 3, 4, 1, 0, 1, 2, 2]), \
           torch.LongTensor([0, 0, 1, 2, 1, 0, 0]), \
           torch.LongTensor([2, 3, 2, 0, 1, 2, 1])

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def test_mlp_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g_feats = torch.tensor([[1.], [2.]]).to(device)
    mlp_predictor = MLPPredictor(in_feats=1, hidden_feats=1, n_tasks=2).to(device)
    assert mlp_predictor(g_feats).shape == torch.Size([2, 2])

def test_gcn_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats = test_graph1()
    g, node_feats = g.to(device), node_feats.to(device)
    bg, batch_node_feats = test_graph2()
    bg, batch_node_feats = bg.to(device), batch_node_feats.to(device)

    # Test default setting
86
    gcn_predictor = GCNPredictor(in_feats=1).to(device)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    gcn_predictor.eval()
    assert gcn_predictor(g, node_feats).shape == torch.Size([1, 1])
    gcn_predictor.train()
    assert gcn_predictor(bg, batch_node_feats).shape == torch.Size([2, 1])

    # Test configured setting
    gcn_predictor = GCNPredictor(in_feats=1,
                                 hidden_feats=[1],
                                 activation=[F.relu],
                                 residual=[True],
                                 batchnorm=[True],
                                 dropout=[0.1],
                                 classifier_hidden_feats=1,
                                 classifier_dropout=0.1,
                                 n_tasks=2).to(device)
    gcn_predictor.eval()
    assert gcn_predictor(g, node_feats).shape == torch.Size([1, 2])
    gcn_predictor.train()
    assert gcn_predictor(bg, batch_node_feats).shape == torch.Size([2, 2])

def test_gat_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats = test_graph1()
    g, node_feats = g.to(device), node_feats.to(device)
    bg, batch_node_feats = test_graph2()
    bg, batch_node_feats = bg.to(device), batch_node_feats.to(device)

    # Test default setting
    gat_predictor = GATPredictor(in_feats=1).to(device)
    gat_predictor.eval()
    assert gat_predictor(g, node_feats).shape == torch.Size([1, 1])
    gat_predictor.train()
    assert gat_predictor(bg, batch_node_feats).shape == torch.Size([2, 1])

    # Test configured setting
    gat_predictor = GATPredictor(in_feats=1,
                                 hidden_feats=[1, 2],
                                 num_heads=[2, 3],
                                 feat_drops=[0.1, 0.1],
                                 attn_drops=[0.1, 0.1],
                                 alphas=[0.1, 0.1],
                                 residuals=[True, True],
                                 agg_modes=['mean', 'flatten'],
                                 activations=[None, F.elu]).to(device)
    gat_predictor.eval()
    assert gat_predictor(g, node_feats).shape == torch.Size([1, 1])
    gat_predictor.train()
    assert gat_predictor(bg, batch_node_feats).shape == torch.Size([2, 1])

def test_attentivefp_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats, edge_feats = test_graph3()
    g, node_feats, edge_feats = g.to(device), node_feats.to(device), edge_feats.to(device)
    bg, batch_node_feats, batch_edge_feats = test_graph4()
    bg, batch_node_feats, batch_edge_feats = bg.to(device), batch_node_feats.to(device), \
                                             batch_edge_feats.to(device)
    attentivefp_predictor = AttentiveFPPredictor(node_feat_size=1,
                                                 edge_feat_size=2,
                                                 num_layers=2,
                                                 num_timesteps=1,
                                                 graph_feat_size=1,
                                                 n_tasks=2).to(device)
    assert attentivefp_predictor(g, node_feats, edge_feats).shape == torch.Size([1, 2])
    assert attentivefp_predictor(bg, batch_node_feats, batch_edge_feats).shape == \
           torch.Size([2, 2])

def test_schnet_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_types, edge_dists = test_graph5()
    g, node_types, edge_dists = g.to(device), node_types.to(device), edge_dists.to(device)
    bg, batch_node_types, batch_edge_dists = test_graph6()
    bg, batch_node_types, batch_edge_dists = bg.to(device), batch_node_types.to(device), \
                                             batch_edge_dists.to(device)

    # Test default setting
    schnet_predictor = SchNetPredictor().to(device)
    assert schnet_predictor(g, node_types, edge_dists).shape == torch.Size([1, 1])
    assert schnet_predictor(bg, batch_node_types, batch_edge_dists).shape == \
           torch.Size([2, 1])

    # Test configured setting
    schnet_predictor = SchNetPredictor(node_feats=2,
                                       hidden_feats=[2, 2],
                                       classifier_hidden_feats=3,
                                       n_tasks=3,
                                       num_node_types=5,
                                       cutoff=0.3).to(device)
    assert schnet_predictor(g, node_types, edge_dists).shape == torch.Size([1, 3])
    assert schnet_predictor(bg, batch_node_types, batch_edge_dists).shape == \
           torch.Size([2, 3])

def test_mgcn_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_types, edge_dists = test_graph5()
    g, node_types, edge_dists = g.to(device), node_types.to(device), edge_dists.to(device)
    bg, batch_node_types, batch_edge_dists = test_graph6()
    bg, batch_node_types, batch_edge_dists = bg.to(device), batch_node_types.to(device), \
                                             batch_edge_dists.to(device)

    # Test default setting
    mgcn_predictor = MGCNPredictor().to(device)
    assert mgcn_predictor(g, node_types, edge_dists).shape == torch.Size([1, 1])
    assert mgcn_predictor(bg, batch_node_types, batch_edge_dists).shape == \
           torch.Size([2, 1])

    # Test configured setting
    mgcn_predictor = MGCNPredictor(feats=2,
                                   n_layers=2,
                                   classifier_hidden_feats=3,
                                   n_tasks=3,
                                   num_node_types=5,
                                   num_edge_types=150,
                                   cutoff=0.3).to(device)
    assert mgcn_predictor(g, node_types, edge_dists).shape == torch.Size([1, 3])
    assert mgcn_predictor(bg, batch_node_types, batch_edge_dists).shape == \
           torch.Size([2, 3])

def test_mpnn_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats, edge_feats = test_graph3()
    g, node_feats, edge_feats = g.to(device), node_feats.to(device), edge_feats.to(device)
    bg, batch_node_feats, batch_edge_feats = test_graph4()
    bg, batch_node_feats, batch_edge_feats = bg.to(device), batch_node_feats.to(device), \
                                             batch_edge_feats.to(device)

    # Test default setting
    mpnn_predictor = MPNNPredictor(node_in_feats=1,
234
                                   edge_in_feats=2).to(device)
235
236
237
238
239
240
241
242
243
244
245
246
    assert mpnn_predictor(g, node_feats, edge_feats).shape == torch.Size([1, 1])
    assert mpnn_predictor(bg, batch_node_feats, batch_edge_feats).shape == \
           torch.Size([2, 1])

    # Test configured setting
    mpnn_predictor = MPNNPredictor(node_in_feats=1,
                                   edge_in_feats=2,
                                   node_out_feats=2,
                                   edge_hidden_feats=2,
                                   n_tasks=2,
                                   num_step_message_passing=2,
                                   num_step_set2set=2,
247
                                   num_layer_set2set=2).to(device)
248
249
250
251
    assert mpnn_predictor(g, node_feats, edge_feats).shape == torch.Size([1, 2])
    assert mpnn_predictor(bg, batch_node_feats, batch_edge_feats).shape == \
           torch.Size([2, 2])

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def test_weave_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    bg, batch_node_feats, batch_edge_feats = test_graph4()
    bg, batch_node_feats, batch_edge_feats = bg.to(device), batch_node_feats.to(device), \
                                             batch_edge_feats.to(device)

    # Test default setting
    weave_predictor = WeavePredictor(node_in_feats=1,
                                     edge_in_feats=2).to(device)
    assert weave_predictor(bg, batch_node_feats, batch_edge_feats).shape == \
           torch.Size([2, 1])

    # Test configured setting
    weave_predictor = WeavePredictor(node_in_feats=1,
                                     edge_in_feats=2,
                                     num_gnn_layers=2,
                                     gnn_hidden_feats=10,
                                     gnn_activation=F.relu,
                                     graph_feats=128,
                                     gaussian_expand=True,
                                     gaussian_memberships=None,
                                     readout_activation=nn.Tanh(),
                                     n_tasks=2).to(device)
    assert weave_predictor(bg, batch_node_feats, batch_edge_feats).shape == \
           torch.Size([2, 2])

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
def test_gin_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats1, node_feats2, edge_feats1, edge_feats2 = test_graph7()
    node_feats1, node_feats2 = node_feats1.to(device), node_feats2.to(device)
    edge_feats1, edge_feats2 = edge_feats1.to(device), edge_feats2.to(device)
    bg, batch_node_feats1, batch_node_feats2, \
    batch_edge_feats1, batch_edge_feats2 = test_graph8()
    batch_node_feats1, batch_node_feats2 = batch_node_feats1.to(device), \
                                           batch_node_feats2.to(device)
    batch_edge_feats1, batch_edge_feats2 = batch_edge_feats1.to(device), \
                                           batch_edge_feats2.to(device)

    num_node_emb_list = [3, 5]
    num_edge_emb_list = [3, 4]
    for JK in ['concat', 'last', 'max', 'sum']:
        for readout in ['sum', 'mean', 'max', 'attention']:
            model = GINPredictor(num_node_emb_list=num_node_emb_list,
                                 num_edge_emb_list=num_edge_emb_list,
                                 num_layers=2,
                                 emb_dim=10,
                                 JK=JK,
                                 readout=readout,
                                 n_tasks=2).to(device)
            assert model(g, [node_feats1, node_feats2], [edge_feats1, edge_feats2]).shape \
                   == torch.Size([1, 2])
            assert model(bg, [batch_node_feats1, batch_node_feats2],
                         [batch_edge_feats1, batch_edge_feats2]).shape == torch.Size([2, 2])

314
315
316
317
318
319
320
321
if __name__ == '__main__':
    test_mlp_predictor()
    test_gcn_predictor()
    test_gat_predictor()
    test_attentivefp_predictor()
    test_schnet_predictor()
    test_mgcn_predictor()
    test_mpnn_predictor()
322
    test_weave_predictor()
323
    test_gin_predictor()