test_property_prediction.py 9.98 KB
Newer Older
1
2
import dgl
import torch
3
import torch.nn.functional as F
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

from dgl import DGLGraph

from dgllife.model.model_zoo import *

def test_graph1():
    """Graph with node features."""
    g = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g, torch.arange(g.number_of_nodes()).float().reshape(-1, 1)

def test_graph2():
    """Batched graph with node features."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.arange(bg.number_of_nodes()).float().reshape(-1, 1)

def test_graph3():
    """Graph with node features and edge features."""
    g = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g, torch.arange(g.number_of_nodes()).float().reshape(-1, 1), \
           torch.arange(2 * g.number_of_edges()).float().reshape(-1, 2)

def test_graph4():
    """Batched graph with node features and edge features."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.arange(bg.number_of_nodes()).float().reshape(-1, 1), \
           torch.arange(2 * bg.number_of_edges()).float().reshape(-1, 2)

def test_graph5():
    """Graph with node types and edge distances."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    return g1, torch.LongTensor([0, 1, 0]), torch.randn(3, 1)

def test_graph6():
    """Batched graph with node types and edge distances."""
    g1 = DGLGraph([(0, 1), (0, 2), (1, 2)])
    g2 = DGLGraph([(0, 1), (1, 2), (1, 3), (1, 4)])
    bg = dgl.batch([g1, g2])
    return bg, torch.LongTensor([0, 1, 0, 2, 0, 3, 4, 4]), torch.randn(7, 1)

def test_mlp_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g_feats = torch.tensor([[1.], [2.]]).to(device)
    mlp_predictor = MLPPredictor(in_feats=1, hidden_feats=1, n_tasks=2).to(device)
    assert mlp_predictor(g_feats).shape == torch.Size([2, 2])

def test_gcn_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats = test_graph1()
    g, node_feats = g.to(device), node_feats.to(device)
    bg, batch_node_feats = test_graph2()
    bg, batch_node_feats = bg.to(device), batch_node_feats.to(device)

    # Test default setting
69
    gcn_predictor = GCNPredictor(in_feats=1).to(device)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    gcn_predictor.eval()
    assert gcn_predictor(g, node_feats).shape == torch.Size([1, 1])
    gcn_predictor.train()
    assert gcn_predictor(bg, batch_node_feats).shape == torch.Size([2, 1])

    # Test configured setting
    gcn_predictor = GCNPredictor(in_feats=1,
                                 hidden_feats=[1],
                                 activation=[F.relu],
                                 residual=[True],
                                 batchnorm=[True],
                                 dropout=[0.1],
                                 classifier_hidden_feats=1,
                                 classifier_dropout=0.1,
                                 n_tasks=2).to(device)
    gcn_predictor.eval()
    assert gcn_predictor(g, node_feats).shape == torch.Size([1, 2])
    gcn_predictor.train()
    assert gcn_predictor(bg, batch_node_feats).shape == torch.Size([2, 2])

def test_gat_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats = test_graph1()
    g, node_feats = g.to(device), node_feats.to(device)
    bg, batch_node_feats = test_graph2()
    bg, batch_node_feats = bg.to(device), batch_node_feats.to(device)

    # Test default setting
    gat_predictor = GATPredictor(in_feats=1).to(device)
    gat_predictor.eval()
    assert gat_predictor(g, node_feats).shape == torch.Size([1, 1])
    gat_predictor.train()
    assert gat_predictor(bg, batch_node_feats).shape == torch.Size([2, 1])

    # Test configured setting
    gat_predictor = GATPredictor(in_feats=1,
                                 hidden_feats=[1, 2],
                                 num_heads=[2, 3],
                                 feat_drops=[0.1, 0.1],
                                 attn_drops=[0.1, 0.1],
                                 alphas=[0.1, 0.1],
                                 residuals=[True, True],
                                 agg_modes=['mean', 'flatten'],
                                 activations=[None, F.elu]).to(device)
    gat_predictor.eval()
    assert gat_predictor(g, node_feats).shape == torch.Size([1, 1])
    gat_predictor.train()
    assert gat_predictor(bg, batch_node_feats).shape == torch.Size([2, 1])

def test_attentivefp_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats, edge_feats = test_graph3()
    g, node_feats, edge_feats = g.to(device), node_feats.to(device), edge_feats.to(device)
    bg, batch_node_feats, batch_edge_feats = test_graph4()
    bg, batch_node_feats, batch_edge_feats = bg.to(device), batch_node_feats.to(device), \
                                             batch_edge_feats.to(device)
    attentivefp_predictor = AttentiveFPPredictor(node_feat_size=1,
                                                 edge_feat_size=2,
                                                 num_layers=2,
                                                 num_timesteps=1,
                                                 graph_feat_size=1,
                                                 n_tasks=2).to(device)
    assert attentivefp_predictor(g, node_feats, edge_feats).shape == torch.Size([1, 2])
    assert attentivefp_predictor(bg, batch_node_feats, batch_edge_feats).shape == \
           torch.Size([2, 2])

def test_schnet_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_types, edge_dists = test_graph5()
    g, node_types, edge_dists = g.to(device), node_types.to(device), edge_dists.to(device)
    bg, batch_node_types, batch_edge_dists = test_graph6()
    bg, batch_node_types, batch_edge_dists = bg.to(device), batch_node_types.to(device), \
                                             batch_edge_dists.to(device)

    # Test default setting
    schnet_predictor = SchNetPredictor().to(device)
    assert schnet_predictor(g, node_types, edge_dists).shape == torch.Size([1, 1])
    assert schnet_predictor(bg, batch_node_types, batch_edge_dists).shape == \
           torch.Size([2, 1])

    # Test configured setting
    schnet_predictor = SchNetPredictor(node_feats=2,
                                       hidden_feats=[2, 2],
                                       classifier_hidden_feats=3,
                                       n_tasks=3,
                                       num_node_types=5,
                                       cutoff=0.3).to(device)
    assert schnet_predictor(g, node_types, edge_dists).shape == torch.Size([1, 3])
    assert schnet_predictor(bg, batch_node_types, batch_edge_dists).shape == \
           torch.Size([2, 3])

def test_mgcn_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_types, edge_dists = test_graph5()
    g, node_types, edge_dists = g.to(device), node_types.to(device), edge_dists.to(device)
    bg, batch_node_types, batch_edge_dists = test_graph6()
    bg, batch_node_types, batch_edge_dists = bg.to(device), batch_node_types.to(device), \
                                             batch_edge_dists.to(device)

    # Test default setting
    mgcn_predictor = MGCNPredictor().to(device)
    assert mgcn_predictor(g, node_types, edge_dists).shape == torch.Size([1, 1])
    assert mgcn_predictor(bg, batch_node_types, batch_edge_dists).shape == \
           torch.Size([2, 1])

    # Test configured setting
    mgcn_predictor = MGCNPredictor(feats=2,
                                   n_layers=2,
                                   classifier_hidden_feats=3,
                                   n_tasks=3,
                                   num_node_types=5,
                                   num_edge_types=150,
                                   cutoff=0.3).to(device)
    assert mgcn_predictor(g, node_types, edge_dists).shape == torch.Size([1, 3])
    assert mgcn_predictor(bg, batch_node_types, batch_edge_dists).shape == \
           torch.Size([2, 3])

def test_mpnn_predictor():
    if torch.cuda.is_available():
        device = torch.device('cuda:0')
    else:
        device = torch.device('cpu')

    g, node_feats, edge_feats = test_graph3()
    g, node_feats, edge_feats = g.to(device), node_feats.to(device), edge_feats.to(device)
    bg, batch_node_feats, batch_edge_feats = test_graph4()
    bg, batch_node_feats, batch_edge_feats = bg.to(device), batch_node_feats.to(device), \
                                             batch_edge_feats.to(device)

    # Test default setting
    mpnn_predictor = MPNNPredictor(node_in_feats=1,
217
                                   edge_in_feats=2).to(device)
218
219
220
221
222
223
224
225
226
227
228
229
    assert mpnn_predictor(g, node_feats, edge_feats).shape == torch.Size([1, 1])
    assert mpnn_predictor(bg, batch_node_feats, batch_edge_feats).shape == \
           torch.Size([2, 1])

    # Test configured setting
    mpnn_predictor = MPNNPredictor(node_in_feats=1,
                                   edge_in_feats=2,
                                   node_out_feats=2,
                                   edge_hidden_feats=2,
                                   n_tasks=2,
                                   num_step_message_passing=2,
                                   num_step_set2set=2,
230
                                   num_layer_set2set=2).to(device)
231
232
233
234
235
236
237
238
239
240
241
242
    assert mpnn_predictor(g, node_feats, edge_feats).shape == torch.Size([1, 2])
    assert mpnn_predictor(bg, batch_node_feats, batch_edge_feats).shape == \
           torch.Size([2, 2])

if __name__ == '__main__':
    test_mlp_predictor()
    test_gcn_predictor()
    test_gat_predictor()
    test_attentivefp_predictor()
    test_schnet_predictor()
    test_mgcn_predictor()
    test_mpnn_predictor()