test_sampling.py 22.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import dgl
import backend as F
import numpy as np
import unittest

def check_random_walk(g, metapath, traces, ntypes, prob=None):
    traces = F.asnumpy(traces)
    ntypes = F.asnumpy(ntypes)
    for j in range(traces.shape[1] - 1):
        assert ntypes[j] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[0])
        assert ntypes[j + 1] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[2])

    for i in range(traces.shape[0]):
        for j in range(traces.shape[1] - 1):
            assert g.has_edge_between(
                traces[i, j], traces[i, j+1], etype=metapath[j])
            if prob is not None and prob in g.edges[metapath[j]].data:
                p = F.asnumpy(g.edges[metapath[j]].data['p'])
                eids = g.edge_id(traces[i, j], traces[i, j+1], etype=metapath[j])
                assert p[eids] != 0

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented")
def test_random_walk():
    g1 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (2, 0)]
        })
    g2 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (1, 3), (2, 0), (3, 0)]
        })
    g3 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (2, 0)],
        ('user', 'view', 'item'): [(0, 0), (1, 1), (2, 2)],
        ('item', 'viewed-by', 'user'): [(0, 0), (1, 1), (2, 2)]})
    g4 = dgl.heterograph({
        ('user', 'follow', 'user'): [(0, 1), (1, 2), (1, 3), (2, 0), (3, 0)],
        ('user', 'view', 'item'): [(0, 0), (0, 1), (1, 1), (2, 2), (3, 2), (3, 1)],
        ('item', 'viewed-by', 'user'): [(0, 0), (1, 0), (1, 1), (2, 2), (2, 3), (1, 3)]})

    g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
40
    g2.edata['p2'] = F.tensor([[3], [0], [3], [3], [3]], dtype=F.float32)
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    g4.edges['follow'].data['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32)
    g4.edges['viewed-by'].data['p'] = F.tensor([1, 1, 1, 1, 1, 1], dtype=F.float32)

    traces, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=0.)
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=F.zeros((4,), F.float32, F.cpu()))
    check_random_walk(g1, ['follow'] * 4, traces, ntypes)
    traces, ntypes = dgl.sampling.random_walk(
        g1, [0, 1, 2, 0, 1, 2], length=5,
        restart_prob=F.tensor([0, 0, 0, 0, 1], dtype=F.float32))
    check_random_walk(
        g1, ['follow'] * 4, F.slice_axis(traces, 1, 0, 5), F.slice_axis(ntypes, 0, 0, 5))
    assert (F.asnumpy(traces)[:, 5] == -1).all()

    traces, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4)
    check_random_walk(g2, ['follow'] * 4, traces, ntypes)

    traces, ntypes = dgl.sampling.random_walk(
        g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p')
    check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p')

66
67
68
69
70
71
72
73
    try:
        traces, ntypes = dgl.sampling.random_walk(
            g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p2')
        fail = False
    except dgl.DGLError:
        fail = True
    assert fail

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    metapath = ['follow', 'view', 'viewed-by'] * 2
    traces, ntypes = dgl.sampling.random_walk(
        g3, [0, 1, 2, 0, 1, 2], metapath=metapath)
    check_random_walk(g3, metapath, traces, ntypes)

    metapath = ['follow', 'view', 'viewed-by'] * 2
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath)
    check_random_walk(g4, metapath, traces, ntypes)

    metapath = ['follow', 'view', 'viewed-by'] * 2
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p')
    check_random_walk(g4, metapath, traces, ntypes, 'p')
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', restart_prob=0.)
    check_random_walk(g4, metapath, traces, ntypes, 'p')
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p',
        restart_prob=F.zeros((6,), F.float32, F.cpu()))
    check_random_walk(g4, metapath, traces, ntypes, 'p')
    traces, ntypes = dgl.sampling.random_walk(
        g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath + ['follow'], prob='p',
        restart_prob=F.tensor([0, 0, 0, 0, 0, 0, 1], F.float32))
    check_random_walk(g4, metapath, traces[:, :7], ntypes[:7], 'p')
    assert (F.asnumpy(traces[:, 7]) == -1).all()

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU pack traces not implemented")
def test_pack_traces():
    traces, types = (np.array(
        [[ 0,  1, -1, -1, -1, -1, -1],
         [ 0,  1,  1,  3,  0,  0,  0]], dtype='int64'),
        np.array([0, 0, 1, 0, 0, 1, 0], dtype='int64'))
    traces = F.zerocopy_from_numpy(traces)
    types = F.zerocopy_from_numpy(types)
    result = dgl.sampling.pack_traces(traces, types)
    assert F.array_equal(result[0], F.tensor([0, 1, 0, 1, 1, 3, 0, 0, 0], dtype=F.int64))
    assert F.array_equal(result[1], F.tensor([0, 0, 0, 0, 1, 0, 0, 1, 0], dtype=F.int64))
    assert F.array_equal(result[2], F.tensor([2, 7], dtype=F.int64))
    assert F.array_equal(result[3], F.tensor([0, 2], dtype=F.int64))

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def test_pinsage_sampling():
    def _test_sampler(g, sampler, ntype):
        neighbor_g = sampler(F.tensor([0, 2], dtype=F.int64))
        assert neighbor_g.ntypes == [ntype]
        u, v = neighbor_g.all_edges(form='uv', order='eid')
        uv = list(zip(F.asnumpy(u).tolist(), F.asnumpy(v).tolist()))
        assert (1, 0) in uv or (0, 0) in uv
        assert (2, 2) in uv or (3, 2) in uv

    g = dgl.heterograph({
        ('item', 'bought-by', 'user'): [(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3)],
        ('user', 'bought', 'item'): [(0, 0), (1, 0), (0, 1), (1, 1), (2, 2), (3, 2), (2, 3), (3, 3)]})
    sampler = dgl.sampling.PinSAGESampler(g, 'item', 'user', 4, 0.5, 3, 2)
    _test_sampler(g, sampler, 'item')
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['bought-by', 'bought'])
    _test_sampler(g, sampler, 'item')
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, 
        [('item', 'bought-by', 'user'), ('user', 'bought', 'item')])
    _test_sampler(g, sampler, 'item')
    g = dgl.graph([(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3)])
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2)
    _test_sampler(g, sampler, g.ntypes[0])
    g = dgl.heterograph({
        ('A', 'AB', 'B'): [(0, 1), (2, 3)],
        ('B', 'BC', 'C'): [(1, 2), (3, 1)],
        ('C', 'CA', 'A'): [(2, 0), (1, 2)]})
    sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['AB', 'BC', 'CA'])
    _test_sampler(g, sampler, 'A')

144
145
146
147
148
149
150
151
152
153
154
def _gen_neighbor_sampling_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
        card2 = (1 << 50, 1 << 50)
    else:
        card = None
        card2 = None
    
    if reverse:
        g = dgl.graph([(0,1),(0,2),(0,3),(1,0),(1,2),(1,3),(2,0)],
155
                'user', 'follow', num_nodes=card)
156
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
157
        g1 = dgl.bipartite([(0,0),(1,0),(2,1),(2,3)], 'game', 'play', 'user', num_nodes=card2)
158
        g1.edata['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32)
159
        g2 = dgl.bipartite([(0,2),(1,2),(2,2),(0,1),(3,1),(0,0)], 'user', 'liked-by', 'game', num_nodes=card2)
160
        g2.edata['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
161
        g3 = dgl.bipartite([(0,0),(0,1),(0,2),(0,3)], 'coin', 'flips', 'user', num_nodes=card2)
162
163
164
165

        hg = dgl.hetero_from_relations([g, g1, g2, g3])
    else:
        g = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)],
166
                'user', 'follow', num_nodes=card)
167
        g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32)
168
        g1 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game', num_nodes=card2)
169
        g1.edata['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32)
170
        g2 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user', num_nodes=card2)
171
        g2.edata['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
172
        g3 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin', num_nodes=card2)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

        hg = dgl.hetero_from_relations([g, g1, g2, g3])
    return g, hg

def _gen_neighbor_topk_test_graph(hypersparse, reverse):
    if hypersparse:
        # should crash if allocated a CSR
        card = 1 << 50
        card2 = (1 << 50, 1 << 50)
    else:
        card = None
        card2 = None
 
    if reverse:
        g = dgl.graph([(0,1),(0,2),(0,3),(1,0),(1,2),(1,3),(2,0)],
                'user', 'follow')
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
        g1 = dgl.bipartite([(0,0),(1,0),(2,1),(2,3)], 'game', 'play', 'user')
        g1.edata['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32)
        g2 = dgl.bipartite([(0,2),(1,2),(2,2),(0,1),(3,1),(0,0)], 'user', 'liked-by', 'game')
        g2.edata['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
        g3 = dgl.bipartite([(0,0),(0,1),(0,2),(0,3)], 'coin', 'flips', 'user')
        g3.edata['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32)

        hg = dgl.hetero_from_relations([g, g1, g2, g3])
    else:
        g = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)],
                'user', 'follow')
        g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32)
        g1 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game')
        g1.edata['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32)
        g2 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user')
        g2.edata['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32)
        g3 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin')
        g3.edata['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32)

        hg = dgl.hetero_from_relations([g, g1, g2, g3])
    return g, hg

def _test_sample_neighbors(hypersparse):
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, False)

    def _test1(p, replace):
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 1}
            assert F.array_equal(g.has_edges_between(u, v), F.ones((4,), dtype=F.int64))
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (3, 0) in edge_set
                assert not (3, 1) in edge_set
    _test1(None, True)   # w/ replacement, uniform
    _test1(None, False)  # w/o replacement, uniform
    _test1('prob', True)   # w/ replacement
    _test1('prob', False)  # w/o replacement

    def _test2(p, replace):  # fanout > #neighbors
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace)
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(v))) == {0, 2}
            assert F.array_equal(g.has_edges_between(u, v), F.ones((num_edges,), dtype=F.int64))
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (3, 0) in edge_set
    _test2(None, True)   # w/ replacement, uniform
    _test2(None, False)  # w/o replacement, uniform
    _test2('prob', True)   # w/ replacement
    _test2('prob', False)  # w/o replacement

    def _test3(p, replace):
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace)
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

    _test3(None, True)   # w/ replacement, uniform
    _test3(None, False)  # w/o replacement, uniform
    _test3('prob', True)   # w/ replacement
    _test3('prob', False)  # w/o replacement

    # test different fanouts for different relations
    for i in range(10):
274
275
276
277
278
        subg = dgl.sampling.sample_neighbors(
            hg,
            {'user' : [0,1], 'game' : 0},
            {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': 2},
            replace=True)
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        assert subg['follow'].number_of_edges() == 2
        assert subg['play'].number_of_edges() == 2
        assert subg['liked-by'].number_of_edges() == 0
        assert subg['flips'].number_of_edges() == 0

def _test_sample_neighbors_outedge(hypersparse):
    g, hg = _gen_neighbor_sampling_test_graph(hypersparse, True)

    def _test1(p, replace):
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            assert subg.number_of_edges() == 4
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 1}
            assert F.array_equal(g.has_edges_between(u, v), F.ones((4,), dtype=F.int64))
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == 4
            if p is not None:
                assert not (0, 3) in edge_set
                assert not (1, 3) in edge_set
    _test1(None, True)   # w/ replacement, uniform
    _test1(None, False)  # w/o replacement, uniform
    _test1('prob', True)   # w/ replacement
    _test1('prob', False)  # w/o replacement

    def _test2(p, replace):  # fanout > #neighbors
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace, edge_dir='out')
            assert subg.number_of_nodes() == g.number_of_nodes()
            num_edges = 4 if replace else 3
            assert subg.number_of_edges() == num_edges
            u, v = subg.edges()
            assert set(F.asnumpy(F.unique(u))) == {0, 2}
            assert F.array_equal(g.has_edges_between(u, v), F.ones((num_edges,), dtype=F.int64))
            assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
            edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
            if not replace:
                # check no duplication
                assert len(edge_set) == num_edges
            if p is not None:
                assert not (0, 3) in edge_set
    _test2(None, True)   # w/ replacement, uniform
    _test2(None, False)  # w/o replacement, uniform
    _test2('prob', True)   # w/ replacement
    _test2('prob', False)  # w/o replacement

    def _test3(p, replace):
        for i in range(10):
            subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace, edge_dir='out')
            assert len(subg.ntypes) == 3
            assert len(subg.etypes) == 4
            assert subg['follow'].number_of_edges() == 4
            assert subg['play'].number_of_edges() == 2 if replace else 1
            assert subg['liked-by'].number_of_edges() == 4 if replace else 3
            assert subg['flips'].number_of_edges() == 0

    _test3(None, True)   # w/ replacement, uniform
    _test3(None, False)  # w/o replacement, uniform
    _test3('prob', True)   # w/ replacement
    _test3('prob', False)  # w/o replacement

def _test_sample_neighbors_topk(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, False)

    def _test1():
350
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1])
351
352
353
354
355
356
357
358
359
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
    _test1()

    def _test2():  # k > #neighbors
360
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2])
361
362
363
364
365
366
367
368
369
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert edge_set == {(2,0),(1,0),(0,2)}
    _test2()

    def _test3():
370
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0})
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(2,0),(1,0),(2,1),(3,1)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(2,0),(2,1),(1,0)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

    # test different k for different relations
389
390
    subg = dgl.sampling.select_topk(
        hg, {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': 2}, 'weight', {'user' : [0,1], 'game' : 0})
391
392
393
394
395
396
397
398
399
400
401
    assert len(subg.ntypes) == 3
    assert len(subg.etypes) == 4
    assert subg['follow'].number_of_edges() == 2
    assert subg['play'].number_of_edges() == 1
    assert subg['liked-by'].number_of_edges() == 0
    assert subg['flips'].number_of_edges() == 0

def _test_sample_neighbors_topk_outedge(hypersparse):
    g, hg = _gen_neighbor_topk_test_graph(hypersparse, True)

    def _test1():
402
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1], edge_dir='out')
403
404
405
406
407
408
409
410
411
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 4
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
    _test1()

    def _test2():  # k > #neighbors
412
        subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2], edge_dir='out')
413
414
415
416
417
418
419
420
421
        assert subg.number_of_nodes() == g.number_of_nodes()
        assert subg.number_of_edges() == 3
        u, v = subg.edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(2,0)}
    _test2()

    def _test3():
422
        subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0}, edge_dir='out')
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        assert len(subg.ntypes) == 3
        assert len(subg.etypes) == 4
        u, v = subg['follow'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID])
        assert edge_set == {(0,2),(0,1),(1,2),(1,3)}
        u, v = subg['play'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID])
        assert edge_set == {(0,0)}
        u, v = subg['liked-by'].edges()
        edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v))))
        assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID])
        assert edge_set == {(0,2),(1,2),(0,1)}
        assert subg['flips'].number_of_edges() == 0
    _test3()

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors():
    _test_sample_neighbors(False)
    _test_sample_neighbors(True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_outedge():
    _test_sample_neighbors_outedge(False)
    _test_sample_neighbors_outedge(True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk():
    _test_sample_neighbors_topk(False)
    _test_sample_neighbors_topk(True)

@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_topk_outedge():
    _test_sample_neighbors_topk_outedge(False)
    _test_sample_neighbors_topk_outedge(True)
459

460
461
462
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented")
def test_sample_neighbors_with_0deg():
    g = dgl.graph([], num_nodes=5)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
463
464
465
466
467
468
469
470
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=True)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=False)
    assert sg.number_of_edges() == 0
    sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=True)
    assert sg.number_of_edges() == 0
471

472
473
474
if __name__ == '__main__':
    test_random_walk()
    test_pack_traces()
475
    test_pinsage_sampling()
476
477
478
479
    test_sample_neighbors()
    test_sample_neighbors_outedge()
    test_sample_neighbors_topk()
    test_sample_neighbors_topk_outedge()
480
    test_sample_neighbors_with_0deg()