gcn_mp.py 6.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
"""GCN using basic message passing

References:
- Semi-Supervised Classification with Graph Convolutional Networks
- Paper: https://arxiv.org/abs/1609.02907
- Code: https://github.com/tkipf/gcn
"""
import argparse, time, math
import numpy as np
10
import networkx as nx
11
12
13
import torch
import torch.nn as nn
import torch.nn.functional as F
14
15
16
import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119


def gcn_msg(edge):
    msg = edge.src['h'] * edge.src['norm']
    return {'m': msg}


def gcn_reduce(node):
    accum = torch.sum(node.mailbox['m'], 1) * node.data['norm']
    return {'h': accum}


class NodeApplyModule(nn.Module):
    def __init__(self, out_feats, activation=None, bias=True):
        super(NodeApplyModule, self).__init__()
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_feats))
        else:
            self.bias = None
        self.activation = activation
        self.reset_parameters()

    def reset_parameters(self):
        if self.bias is not None:
            stdv = 1. / math.sqrt(self.bias.size(0))
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, nodes):
        h = nodes.data['h']
        if self.bias is not None:
            h = h + self.bias
        if self.activation:
            h = self.activation(h)
        return {'h': h}


class GCNLayer(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 out_feats,
                 activation,
                 dropout,
                 bias=True):
        super(GCNLayer, self).__init__()
        self.g = g
        self.weight = nn.Parameter(torch.Tensor(in_feats, out_feats))
        if dropout:
            self.dropout = nn.Dropout(p=dropout)
        else:
            self.dropout = 0.
        self.node_update = NodeApplyModule(out_feats, activation, bias)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)

    def forward(self, h):
        if self.dropout:
            h = self.dropout(h)
        self.g.ndata['h'] = torch.mm(h, self.weight)
        self.g.update_all(gcn_msg, gcn_reduce, self.node_update)
        h = self.g.ndata.pop('h')
        return h

class GCN(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.layers = nn.ModuleList()
        # input layer
        self.layers.append(GCNLayer(g, in_feats, n_hidden, activation, dropout))
        # hidden layers
        for i in range(n_layers - 1):
            self.layers.append(GCNLayer(g, n_hidden, n_hidden, activation, dropout))
        # output layer
        self.layers.append(GCNLayer(g, n_hidden, n_classes, None, dropout))

    def forward(self, features):
        h = features
        for layer in self.layers:
            h = layer(h)
        return h

def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

def main(args):
    # load and preprocess dataset
120
121
122
123
124
125
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
126
    else:
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        raise ValueError('Unknown dataset: {}'.format(args.dataset))

    g = data[0]
    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        g = g.to(args.gpu)

    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
141
142
    in_feats = features.shape[1]
    n_classes = data.num_labels
143
    n_edges = g.number_of_edges()
144
145
146
147
148
149
150
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
Zihao Ye's avatar
Zihao Ye committed
151
152
153
              train_mask.int().sum().item(),
              val_mask.int().sum().item(),
              test_mask.int().sum().item()))
154
155

    # add self loop
156
157
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)
158
    n_edges = g.number_of_edges()
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    # normalization
    degs = g.in_degrees().float()
    norm = torch.pow(degs, -0.5)
    norm[torch.isinf(norm)] = 0
    if cuda:
        norm = norm.cuda()
    g.ndata['norm'] = norm.unsqueeze(1)

    # create GCN model
    model = GCN(g,
                in_feats,
                args.n_hidden,
                n_classes,
                args.n_layers,
                F.relu,
                args.dropout)

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(),
                                             acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
            help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
            help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
            help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
            help="Weight for L2 loss")
    args = parser.parse_args()
    print(args)

    main(args)