test_dist_graph_store.py 6.96 KB
Newer Older
1
2
3
4
5
6
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
7
import socket
8
9
10
11
12
13
14
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
from multiprocessing import Process, Manager, Condition, Value
import multiprocessing as mp
from dgl.graph_index import create_graph_index
from dgl.data.utils import load_graphs, save_graphs
from dgl.distributed import DistGraphServer, DistGraph
15
from dgl.distributed import partition_graph, load_partition, GraphPartitionBook, node_split, edge_split
16
17
18
19
import backend as F
import unittest
import pickle

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
if os.name != 'nt':
    import fcntl
    import struct

def get_local_usable_addr():
    """Get local usable IP and port

    Returns
    -------
    str
        IP address, e.g., '192.168.8.12:50051'
    """
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        # doesn't even have to be reachable
        sock.connect(('10.255.255.255', 1))
        ip_addr = sock.getsockname()[0]
    except ValueError:
        ip_addr = '127.0.0.1'
    finally:
        sock.close()
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    sock.listen(1)
    port = sock.getsockname()[1]
    sock.close()

    return ip_addr + ' ' + str(port)

49
50
51
52
53
54
def create_random_graph(n):
    arr = (spsp.random(n, n, density=0.001, format='coo') != 0).astype(np.int64)
    ig = create_graph_index(arr, readonly=True)
    return dgl.DGLGraph(ig)

def run_server(graph_name, server_id, num_clients, barrier):
55
    g = DistGraphServer(server_id, "kv_ip_config.txt", num_clients, graph_name,
56
                        '/tmp/dist_graph/{}.json'.format(graph_name))
57
58
59
60
61
62
    barrier.wait()
    print('start server', server_id)
    g.start()

def run_client(graph_name, barrier, num_nodes, num_edges):
    barrier.wait()
63
    g = DistGraph("kv_ip_config.txt", graph_name)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats1 = g.ndata['features'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges() / 2))
    feats1 = g.edata['features'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
    g.init_ndata('test1', new_shape, F.int32)
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

    # Test init edge data
    new_shape = (g.number_of_edges(), 2)
    g.init_edata('test1', new_shape, F.int32)
    feats = g.edata['test1'][eids]
    assert np.all(F.asnumpy(feats) == 0)

    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.ndata['features']) == g.number_of_nodes()
    assert g.ndata['features'].shape == (g.number_of_nodes(), 1)
    assert g.ndata['features'].dtype == F.int64
    assert g.node_attr_schemes()['features'].dtype == F.int64
    assert g.node_attr_schemes()['test1'].dtype == F.int32
    assert g.node_attr_schemes()['features'].shape == (1,)

107
108
109
110
111
112
113
114
115
    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    # Test node split
    nodes = node_split(selected_nodes, g.get_partition_book(), g.rank())
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes())
    for n in nodes:
        assert n in local_nids

116
117
118
    # clean up
    dgl.distributed.shutdown_servers()
    dgl.distributed.finalize_client()
119
120
    print('end')

121
122
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_server_client():
123
    prepare_dist()
124
125
126
127
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
128
    graph_name = 'dist_graph_test_2'
129
130
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
131
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
132
133
134
135
136

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    barrier = mp.Barrier(2)
    serv_ps = []
137
    ctx = mp.get_context('spawn')
138
    for serv_id in range(1):
139
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, 1, barrier))
140
141
142
143
144
145
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(1):
        print('start client', cli_id)
146
        p = ctx.Process(target=run_client, args=(graph_name, barrier, g.number_of_nodes(),
147
148
149
150
151
152
                                             g.number_of_edges()))
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
153
154
155
156

    for p in serv_ps:
        p.join()

157
158
    print('clients have terminated')

159
def test_split():
160
    prepare_dist()
161
162
163
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
164
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')
165
166
167
168
169
170

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    for i in range(num_parts):
171
        part_g, node_feats, edge_feats, meta = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        num_nodes, num_edges, node_map, edge_map, num_partitions = meta
        gpb = GraphPartitionBook(part_id=i,
                                 num_parts=num_partitions,
                                 node_map=node_map,
                                 edge_map=edge_map,
                                 part_graph=part_g)
        local_nids = F.nonzero_1d(part_g.ndata['local_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
        nodes2 = node_split(node_mask, gpb, i)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

        local_eids = F.nonzero_1d(part_g.edata['local_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
        edges2 = edge_split(edge_mask, gpb, i)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

196
197
def prepare_dist():
    ip_config = open("kv_ip_config.txt", "w")
198
199
    ip_addr = get_local_usable_addr()
    ip_config.write('%s 1\n' % ip_addr)
200
201
    ip_config.close()

202
if __name__ == '__main__':
203
    os.mkdir('/tmp/dist_graph')
204
    test_split()
205
    #test_server_client()