"vscode:/vscode.git/clone" did not exist on "a0bb4ea8df02f3c2976afb7a7e081556868ccd7f"
test_transform.py 122 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
##
#   Copyright 2019-2021 Contributors
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

17
import math
18
import os
19
20
21
22
import unittest

import backend as F

23
24
import dgl
import dgl.function as fn
25
import dgl.partition
26
27
import networkx as nx
import numpy as np
28
import pytest
29
from scipy import sparse as spsp
nv-dlasalle's avatar
nv-dlasalle committed
30
from test_utils import parametrize_idtype
31
from test_utils.graph_cases import get_cases
32
33
34

D = 5

35

36
def create_test_heterograph3(idtype):
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): (
                F.tensor([0, 1, 1, 2], dtype=idtype),
                F.tensor([0, 0, 1, 1], dtype=idtype),
            ),
            ("developer", "develops", "game"): (
                F.tensor([0, 1], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )

    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["developer"].data["h"] = F.copy_to(
        F.tensor([3, 3], dtype=idtype), ctx=F.ctx()
    )
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
64
65
    return g

66

67
def create_test_heterograph4(idtype):
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (
                F.tensor([0, 1, 1, 2, 2, 2], dtype=idtype),
                F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype),
            ),
            ("user", "plays", "game"): (
                F.tensor([0, 1], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edges["follows"].data["h"] = F.copy_to(
        F.tensor([1, 2, 3, 4, 5, 6], dtype=idtype), ctx=F.ctx()
    )
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 2], dtype=idtype), ctx=F.ctx()
    )
94
95
    return g

96

97
def create_test_heterograph5(idtype):
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (
                F.tensor([1, 2], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
            ("user", "plays", "game"): (
                F.tensor([0, 1], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edges["follows"].data["h"] = F.copy_to(
        F.tensor([1, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 2], dtype=idtype), ctx=F.ctx()
    )
124
125
    return g

126

127
# line graph related
128

129

130
def test_line_graph1():
131
    N = 5
132
    G = dgl.DGLGraph(nx.star_graph(N)).to(F.ctx())
133
    G.edata["h"] = F.randn((2 * N, D))
134
135
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
136
    assert F.allclose(L.ndata["h"], G.edata["h"])
137
    assert G.device == F.ctx()
138

139

nv-dlasalle's avatar
nv-dlasalle committed
140
@parametrize_idtype
141
def test_line_graph2(idtype):
142
143
144
145
    g = dgl.heterograph(
        {("user", "follows", "user"): ([0, 1, 1, 2, 2], [2, 0, 2, 0, 1])},
        idtype=idtype,
    )
146
    lg = dgl.line_graph(g)
147
148
149
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
150
151
    assert np.array_equal(F.asnumpy(row), np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col), np.array([3, 4, 0, 3, 4, 0, 1, 2]))
152

153
    lg = dgl.line_graph(g, backtracking=False)
154
155
156
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
157
158
159
160
161
162
    assert np.array_equal(F.asnumpy(row), np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col), np.array([4, 0, 3, 1]))
    g = dgl.heterograph(
        {("user", "follows", "user"): ([0, 1, 1, 2, 2], [2, 0, 2, 0, 1])},
        idtype=idtype,
    ).formats("csr")
163
    lg = dgl.line_graph(g)
164
165
166
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
167
168
169
170
171
172
173
    assert np.array_equal(F.asnumpy(row), np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col), np.array([3, 4, 0, 3, 4, 0, 1, 2]))

    g = dgl.heterograph(
        {("user", "follows", "user"): ([0, 1, 1, 2, 2], [2, 0, 2, 0, 1])},
        idtype=idtype,
    ).formats("csc")
174
    lg = dgl.line_graph(g)
175
176
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
177
    row, col, eid = lg.edges("all")
178
179
180
181
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
182
183
    assert np.array_equal(row[order], np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order], np.array([3, 4, 0, 3, 4, 0, 1, 2]))
184

185

186
187
188
189
190
191
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
192
193
194
195
        e1 = G.edge_ids(0, i)
        e2 = G.edge_ids(i, 0)
        assert not L.has_edges_between(e1, e2)
        assert not L.has_edges_between(e2, e1)
196

197

198
# reverse graph related
nv-dlasalle's avatar
nv-dlasalle committed
199
@parametrize_idtype
200
def test_reverse(idtype):
201
    g = dgl.DGLGraph()
202
    g = g.astype(idtype).to(F.ctx())
203
204
205
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
206
207
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0], [3.0], [4.0]])
    g.edata["h"] = F.tensor([[5.0], [6.0], [7.0]])
208
209
210
211
212
213
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
214
215
216
217
    assert F.allclose(
        F.astype(rg.has_edges_between([1, 2, 1], [0, 1, 2]), F.float32),
        F.ones((3,)),
    )
218
219
220
    assert g.edge_ids(0, 1) == rg.edge_ids(1, 0)
    assert g.edge_ids(1, 2) == rg.edge_ids(2, 1)
    assert g.edge_ids(2, 1) == rg.edge_ids(1, 2)
221

222
    # test dgl.reverse
223
224
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
225
226
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0]])
227
    g_r = dgl.reverse(g)
228
229
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
230
231
    u_g, v_g, eids_g = g.all_edges(form="all")
    u_rg, v_rg, eids_rg = g_r.all_edges(form="all")
232
233
234
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
235
    assert F.array_equal(g.ndata["h"], g_r.ndata["h"])
236
237
238
    assert len(g_r.edata) == 0

    # without share ndata
239
    g_r = dgl.reverse(g, copy_ndata=False)
240
241
242
243
244
245
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
246
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
247
248
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
249
250
    assert F.array_equal(g.ndata["h"], g_r.ndata["h"])
    assert F.array_equal(g.edata["h"], g_r.edata["h"])
251
252

    # add new node feature to g_r
253
254
255
    g_r.ndata["hh"] = F.tensor([0, 1, 2])
    assert ("hh" in g.ndata) is False
    assert ("hh" in g_r.ndata) is True
256
257

    # add new edge feature to g_r
258
259
260
    g_r.edata["hh"] = F.tensor([0, 1, 2])
    assert ("hh" in g.edata) is False
    assert ("hh" in g_r.edata) is True
261
262

    # test heterogeneous graph
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (
                [0, 1, 2, 4, 3, 1, 3],
                [1, 2, 3, 2, 0, 0, 1],
            ),
            ("user", "plays", "game"): (
                [0, 0, 2, 3, 3, 4, 1],
                [1, 0, 1, 0, 1, 0, 0],
            ),
            ("developer", "develops", "game"): ([0, 1, 1, 2], [0, 0, 1, 1]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.tensor([0, 1, 2, 3, 4])
    g.nodes["user"].data["hh"] = F.tensor([1, 1, 1, 1, 1])
    g.nodes["game"].data["h"] = F.tensor([0, 1])
    g.edges["follows"].data["h"] = F.tensor([0, 1, 2, 4, 3, 1, 3])
    g.edges["follows"].data["hh"] = F.tensor([1, 2, 3, 2, 0, 0, 1])
283
    g_r = dgl.reverse(g)
284
285
286
287
288
289
290
291

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
292
293
294
295
296
297
298
299
300
301
302
303
    assert F.array_equal(g.nodes["user"].data["h"], g_r.nodes["user"].data["h"])
    assert F.array_equal(
        g.nodes["user"].data["hh"], g_r.nodes["user"].data["hh"]
    )
    assert F.array_equal(g.nodes["game"].data["h"], g_r.nodes["game"].data["h"])
    assert len(g_r.edges["follows"].data) == 0
    u_g, v_g, eids_g = g.all_edges(
        form="all", etype=("user", "follows", "user")
    )
    u_rg, v_rg, eids_rg = g_r.all_edges(
        form="all", etype=("user", "follows", "user")
    )
304
305
306
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
307
308
309
310
    u_g, v_g, eids_g = g.all_edges(form="all", etype=("user", "plays", "game"))
    u_rg, v_rg, eids_rg = g_r.all_edges(
        form="all", etype=("game", "plays", "user")
    )
311
312
313
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
314
315
316
317
318
319
    u_g, v_g, eids_g = g.all_edges(
        form="all", etype=("developer", "develops", "game")
    )
    u_rg, v_rg, eids_rg = g_r.all_edges(
        form="all", etype=("game", "develops", "developer")
    )
320
321
322
323
324
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
325
    g_r = dgl.reverse(g, copy_ndata=False)
326
327
328
329
330
331
332
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
333
334
    assert len(g_r.nodes["user"].data) == 0
    assert len(g_r.nodes["game"].data) == 0
335

336
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
337
338
339
340
341
342
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
343
344
345
346
347
348
    assert F.array_equal(
        g.edges["follows"].data["h"], g_r.edges["follows"].data["h"]
    )
    assert F.array_equal(
        g.edges["follows"].data["hh"], g_r.edges["follows"].data["hh"]
    )
349
350

    # add new node feature to g_r
351
352
353
    g_r.nodes["user"].data["hhh"] = F.tensor([0, 1, 2, 3, 4])
    assert ("hhh" in g.nodes["user"].data) is False
    assert ("hhh" in g_r.nodes["user"].data) is True
354
355

    # add new edge feature to g_r
356
357
358
    g_r.edges["follows"].data["hhh"] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ("hhh" in g.edges["follows"].data) is False
    assert ("hhh" in g_r.edges["follows"].data) is True
359

360

nv-dlasalle's avatar
nv-dlasalle committed
361
@parametrize_idtype
362
def test_reverse_shared_frames(idtype):
363
    g = dgl.DGLGraph()
364
    g = g.astype(idtype).to(F.ctx())
365
366
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
367
368
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0]])
369
370

    rg = g.reverse(share_ndata=True, share_edata=True)
371
372
373
374
375
    assert F.allclose(g.ndata["h"], rg.ndata["h"])
    assert F.allclose(g.edata["h"], rg.edata["h"])
    assert F.allclose(
        g.edges[[0, 2], [1, 1]].data["h"], rg.edges[[1, 1], [0, 2]].data["h"]
    )
376

377

378
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
379
def test_to_bidirected():
380
    # homogeneous graph
381
    elist = [(0, 0), (0, 1), (1, 0), (1, 1), (2, 1), (2, 2)]
382
    num_edges = 7
383
    g = dgl.graph(tuple(zip(*elist)))
384
385
386
387
388
389
390
391
392
    elist.append((1, 2))
    elist = set(elist)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges() == num_edges
    src, dst = big.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)

    # heterogeneous graph
393
    elist1 = [(0, 0), (0, 1), (1, 0), (1, 1), (2, 1), (2, 2)]
394
    elist2 = [(0, 0), (0, 1)]
395
396
397
398
399
400
401
    g = dgl.heterograph(
        {
            ("user", "wins", "user"): tuple(zip(*elist1)),
            ("user", "follows", "user"): tuple(zip(*elist2)),
        }
    )
    g.nodes["user"].data["h"] = F.ones((3, 1))
402
403
404
405
406
    elist1.append((1, 2))
    elist1 = set(elist1)
    elist2.append((1, 0))
    elist2 = set(elist2)
    big = dgl.to_bidirected(g)
407
408
409
    assert big.number_of_edges("wins") == 7
    assert big.number_of_edges("follows") == 3
    src, dst = big.edges(etype="wins")
410
411
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist1)
412
    src, dst = big.edges(etype="follows")
413
414
415
416
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist2)

    big = dgl.to_bidirected(g, copy_ndata=True)
417
    assert F.array_equal(g.nodes["user"].data["h"], big.nodes["user"].data["h"])
418

419

420
def test_add_reverse_edges():
421
422
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
423
424
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0], [1.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0], [6.0]])
425
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
426
427
428
429
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
430
431
432
433
434
435
436
437
438
439
    assert F.array_equal(g.ndata["h"], bg.ndata["h"])
    assert F.array_equal(
        F.cat([g.edata["h"], g.edata["h"]], dim=0), bg.edata["h"]
    )
    bg.ndata["hh"] = F.tensor([[0.0], [1.0], [2.0], [1.0]])
    assert ("hh" in g.ndata) is False
    bg.edata["hh"] = F.tensor(
        [[0.0], [1.0], [2.0], [1.0], [0.0], [1.0], [2.0], [1.0]]
    )
    assert ("hh" in g.edata) is False
440
441

    # donot share ndata and edata
442
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False)
443
444
445
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
446
447
    assert ("h" in bg.ndata) is False
    assert ("h" in bg.edata) is False
448
449

    # zero edge graph
450
    g = dgl.graph(([], []))
451
452
453
    bg = dgl.add_reverse_edges(
        g, copy_ndata=True, copy_edata=True, exclude_self=False
    )
454
455

    # heterogeneous graph
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    g = dgl.heterograph(
        {
            ("user", "wins", "user"): (
                F.tensor([0, 2, 0, 2, 2]),
                F.tensor([1, 1, 2, 1, 0]),
            ),
            ("user", "plays", "game"): (
                F.tensor([1, 2, 1]),
                F.tensor([2, 1, 1]),
            ),
            ("user", "follows", "user"): (
                F.tensor([1, 2, 1]),
                F.tensor([0, 0, 0]),
            ),
        }
    )
    g.nodes["game"].data["hv"] = F.ones((3, 1))
    g.nodes["user"].data["hv"] = F.ones((3, 1))
    g.edges["wins"].data["h"] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(
        g, copy_ndata=True, copy_edata=True, ignore_bipartite=True
    )
    assert F.array_equal(
        g.nodes["game"].data["hv"], bg.nodes["game"].data["hv"]
    )
    assert F.array_equal(
        g.nodes["user"].data["hv"], bg.nodes["user"].data["hv"]
    )
    u, v = g.all_edges(order="eid", etype=("user", "wins", "user"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "wins", "user"))
486
487
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
488
    assert F.array_equal(
489
490
491
492
493
        F.cat([g.edges["wins"].data["h"], g.edges["wins"].data["h"]], dim=0),
        bg.edges["wins"].data["h"],
    )
    u, v = g.all_edges(order="eid", etype=("user", "follows", "user"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "follows", "user"))
494
495
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
496
497
    u, v = g.all_edges(order="eid", etype=("user", "plays", "game"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "plays", "game"))
498
499
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
500
501
    assert set(bg.edges["plays"].data.keys()) == {dgl.EID}
    assert set(bg.edges["follows"].data.keys()) == {dgl.EID}
502
503

    # donot share ndata and edata
504
505
506
507
508
509
510
511
512
513
    bg = dgl.add_reverse_edges(
        g, copy_ndata=False, copy_edata=False, ignore_bipartite=True
    )
    assert len(bg.edges["wins"].data) == 0
    assert len(bg.edges["plays"].data) == 0
    assert len(bg.edges["follows"].data) == 0
    assert len(bg.nodes["game"].data) == 0
    assert len(bg.nodes["user"].data) == 0
    u, v = g.all_edges(order="eid", etype=("user", "wins", "user"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "wins", "user"))
514
515
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
516
517
    u, v = g.all_edges(order="eid", etype=("user", "follows", "user"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "follows", "user"))
518
519
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
520
521
    u, v = g.all_edges(order="eid", etype=("user", "plays", "game"))
    ub, vb = bg.all_edges(order="eid", etype=("user", "plays", "game"))
522
523
524
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

525
526
527
    # test the case when some nodes have zero degree
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])), num_nodes=6)
528
529
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0], [1.0], [1.0], [1.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0], [6.0]])
530
531
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == bg.number_of_nodes()
532
533
534
535
    assert F.array_equal(g.ndata["h"], bg.ndata["h"])
    assert F.array_equal(
        F.cat([g.edata["h"], g.edata["h"]], dim=0), bg.edata["h"]
    )
536
537

    # heterogeneous graph
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    g = dgl.heterograph(
        {
            ("user", "wins", "user"): (
                F.tensor([0, 2, 0, 2, 2]),
                F.tensor([1, 1, 2, 1, 0]),
            ),
            ("user", "plays", "game"): (
                F.tensor([1, 2, 1]),
                F.tensor([2, 1, 1]),
            ),
            ("user", "follows", "user"): (
                F.tensor([1, 2, 1]),
                F.tensor([0, 0, 0]),
            ),
        },
        num_nodes_dict={"user": 5, "game": 3},
    )
    g.nodes["game"].data["hv"] = F.ones((3, 1))
    g.nodes["user"].data["hv"] = F.ones((5, 1))
    g.edges["wins"].data["h"] = F.tensor([0, 1, 2, 3, 4])
    bg = dgl.add_reverse_edges(
        g, copy_ndata=True, copy_edata=True, ignore_bipartite=True
    )
    assert g.number_of_nodes("user") == bg.number_of_nodes("user")
    assert g.number_of_nodes("game") == bg.number_of_nodes("game")
    assert F.array_equal(
        g.nodes["game"].data["hv"], bg.nodes["game"].data["hv"]
    )
    assert F.array_equal(
        g.nodes["user"].data["hv"], bg.nodes["user"].data["hv"]
    )
    assert F.array_equal(
        F.cat([g.edges["wins"].data["h"], g.edges["wins"].data["h"]], dim=0),
        bg.edges["wins"].data["h"],
    )
573

574
    # test exclude_self
575
576
577
578
579
580
581
    g = dgl.heterograph(
        {
            ("A", "r1", "A"): (F.tensor([0, 0, 1, 1]), F.tensor([0, 1, 1, 2])),
            ("A", "r2", "A"): (F.tensor([0, 1]), F.tensor([1, 2])),
        }
    )
    g.edges["r1"].data["h"] = F.tensor([0, 1, 2, 3])
582
    rg = dgl.add_reverse_edges(g, copy_edata=True, exclude_self=True)
583
584
585
    assert rg.num_edges("r1") == 6
    assert rg.num_edges("r2") == 4
    assert F.array_equal(rg.edges["r1"].data["h"], F.tensor([0, 1, 2, 3, 1, 3]))
586

587

588
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
589
590
591
592
593
594
595
596
597
598
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
599

600

601
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
602
def _test_bidirected_graph():
603
    def _test(in_readonly, out_readonly):
604
        elist = [(0, 0), (0, 1), (1, 0), (1, 1), (2, 1), (2, 2)]
605
        num_edges = 7
606
607
608
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
609
        big = dgl.to_bidirected_stale(g, out_readonly)
610
        assert big.number_of_edges() == num_edges
611
612
613
614
615
616
617
618
619
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

620

621
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
622
623
624
625
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
626
627
628
629
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
630
            g.ndata["h"] = feat
Mufei Li's avatar
Mufei Li committed
631
            for _ in range(k):
632
633
                g.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
            h_0 = g.ndata.pop("h")
Mufei Li's avatar
Mufei Li committed
634
            # use k-hop graph to do message passing for one time.
635
636
637
            g_k.ndata["h"] = feat
            g_k.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
            h_1 = g_k.ndata.pop("h")
Mufei Li's avatar
Mufei Li committed
638
639
640
641
642
643
644
645
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
646

647

648
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
649
650
651
652
653
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
654
        adj = F.tensor(F.swapaxes(dgl.khop_adj(g, k), 0, 1))
655
        # use original graph to do message passing for k times.
656
        g.ndata["h"] = feat
657
        for _ in range(k):
658
659
            g.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
        h_0 = g.ndata.pop("h")
660
661
662
663
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

664

665
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
666
667
668
669
670
671
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
672
    assert l_max[0] < 2 + eps
Zihao Ye's avatar
Zihao Ye committed
673
    # test batched DGLGraph
674
    """
675
676
677
678
679
680
681
682
683
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps
684
    """
685

686

687
def create_large_graph(num_nodes, idtype=F.int64):
688
689
690
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
691
    spm.sum_duplicates()
692

693
    return dgl.from_scipy(spm, idtype=idtype)
694

695

696
# Disabled since everything will be on heterogeneous graphs
697
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
698
def test_partition_with_halo():
699
    g = create_large_graph(1000)
700
    node_part = np.random.choice(4, g.number_of_nodes())
701
702
703
    subgs, _, _ = dgl.transforms.partition_graph_with_halo(
        g, node_part, 2, reshuffle=True
    )
704
705
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
706
707
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata["inner_node"]))[0]
        orig_nids = F.asnumpy(subg.ndata["orig_id"])[lnode_ids]
708
        assert np.all(np.sort(orig_nids) == node_ids)
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        assert np.all(
            F.asnumpy(subg.in_degrees(lnode_ids))
            == F.asnumpy(g.in_degrees(orig_nids))
        )
        assert np.all(
            F.asnumpy(subg.out_degrees(lnode_ids))
            == F.asnumpy(g.out_degrees(orig_nids))
        )


@unittest.skipIf(os.name == "nt", reason="Do not support windows yet")
@unittest.skipIf(
    F._default_context_str == "gpu", reason="METIS doesn't support GPU"
)
nv-dlasalle's avatar
nv-dlasalle committed
723
@parametrize_idtype
724
def test_metis_partition(idtype):
Da Zheng's avatar
Da Zheng committed
725
    # TODO(zhengda) Metis fails to partition a small graph.
726
727
728
729
730
731
732
733
734
735
736
737
738
    g = create_large_graph(1000, idtype=idtype)
    if idtype == F.int64:
        check_metis_partition(g, 0)
        check_metis_partition(g, 1)
        check_metis_partition(g, 2)
        check_metis_partition_with_constraint(g)
    else:
        assert_fail = False
        try:
            check_metis_partition(g, 1)
        except:
            assert_fail = True
        assert assert_fail
739

740

741
742
def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
743
744
745
746
747
    ntypes[0 : int(g.number_of_nodes() / 4)] = 1
    ntypes[int(g.number_of_nodes() * 3 / 4) :] = 2
    subgs = dgl.transforms.metis_partition(
        g, 4, extra_cached_hops=1, balance_ntypes=ntypes
    )
748
749
750
751
752
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
753
754
755
756
757
758
            print("type0:", np.sum(sub_ntypes == 0))
            print("type1:", np.sum(sub_ntypes == 1))
            print("type2:", np.sum(sub_ntypes == 2))
    subgs = dgl.transforms.metis_partition(
        g, 4, extra_cached_hops=1, balance_ntypes=ntypes, balance_edges=True
    )
759
760
761
762
763
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
764
765
766
            print("type0:", np.sum(sub_ntypes == 0))
            print("type1:", np.sum(sub_ntypes == 1))
            print("type2:", np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
767

768

Da Zheng's avatar
Da Zheng committed
769
def check_metis_partition(g, extra_hops):
770
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=extra_hops)
771
772
773
774
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
775
776
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata["inner_node"]))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata["inner_edge"]))[0]
Da Zheng's avatar
Da Zheng committed
777
778
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
779
780
781
            assert np.sum(F.asnumpy(subg.ndata["part_id"]) == part_id) == len(
                lnode_ids
            )
782
783
784
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
785
786
787
    if extra_hops == 0:
        return

788
    # partitions with node reshuffling
789
790
791
    subgs = dgl.transforms.metis_partition(
        g, 4, extra_cached_hops=extra_hops, reshuffle=True
    )
792
793
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
794
    edge_cnts = np.zeros((g.number_of_edges(),))
795
796
    if subgs is not None:
        for part_id, subg in subgs.items():
797
798
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata["inner_node"]))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata["inner_edge"]))[0]
799
800
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
801
802
803
            assert np.sum(F.asnumpy(subg.ndata["part_id"]) == part_id) == len(
                lnode_ids
            )
Da Zheng's avatar
Da Zheng committed
804
805
806
807
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
808
            parent_ids = parent_ids[: len(lnode_ids)]
809
            assert np.all(
810
811
                parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1)
            )
Da Zheng's avatar
Da Zheng committed
812
813
814
815
816

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

817
818
            orig_ids = subg.ndata["orig_id"]
            inner_node = F.asnumpy(subg.ndata["inner_node"])
Da Zheng's avatar
Da Zheng committed
819
820
821
822
823
824
825
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
826
827
828
829
                    assert np.all(
                        np.sort(F.asnumpy(old_neighs1))
                        == np.sort(F.asnumpy(old_neighs2))
                    )
Da Zheng's avatar
Da Zheng committed
830
831
832
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

833
834
835
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

836

837
838
839
@unittest.skipIf(
    F._default_context_str == "gpu", reason="It doesn't support GPU"
)
Da Zheng's avatar
Da Zheng committed
840
def test_reorder_nodes():
841
    g = create_large_graph(1000)
Da Zheng's avatar
Da Zheng committed
842
843
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
844
    new_g = dgl.partition.reorder_nodes(g, new_nids)
Da Zheng's avatar
Da Zheng committed
845
846
847
848
849
850
851
852
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
853
    orig_ids = F.asnumpy(new_g.ndata["orig_id"])
854
855
856
857
858
859
860
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
861
862
863
864
865
866
867
868
869
870
871
872
873
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

874

nv-dlasalle's avatar
nv-dlasalle committed
875
@parametrize_idtype
876
def test_compact(idtype):
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
    g1 = dgl.heterograph(
        {
            ("user", "follow", "user"): ([1, 3], [3, 5]),
            ("user", "plays", "game"): ([2, 3, 2], [4, 4, 5]),
            ("game", "wished-by", "user"): ([6, 5], [7, 7]),
        },
        {"user": 20, "game": 10},
        idtype=idtype,
        device=F.ctx(),
    )

    g2 = dgl.heterograph(
        {
            ("game", "clicked-by", "user"): ([3], [1]),
            ("user", "likes", "user"): ([1, 8], [8, 9]),
        },
        {"user": 20, "game": 10},
        idtype=idtype,
        device=F.ctx(),
    )

    g3 = dgl.heterograph(
        {("user", "_E", "user"): ((0, 1), (1, 2))},
        {"user": 10},
        idtype=idtype,
        device=F.ctx(),
    )
    g4 = dgl.heterograph(
        {("user", "_E", "user"): ((1, 3), (3, 5))},
        {"user": 10},
        idtype=idtype,
        device=F.ctx(),
    )
910
911
912
913
914
915
916
917
918

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
919
            g_src, g_dst = g.all_edges(order="eid", etype=etype)
920
921
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
922
            new_g_src, new_g_dst = new_g.all_edges(order="eid", etype=etype)
923
924
925
926
927
928
929
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
930
931
932
    induced_nodes = {
        ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes
    }
933
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
934
    assert new_g1.idtype == idtype
935
936
    assert set(induced_nodes["user"]) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes["game"]) == set([4, 5, 6])
937
938
939
940
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
941
942
        g1, always_preserve={"game": F.tensor([4, 7], idtype)}
    )
943
    assert new_g1.idtype == idtype
944
945
946
    induced_nodes = {
        ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes
    }
947
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
948
949
    assert set(induced_nodes["user"]) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes["game"]) == set([4, 5, 6, 7])
950
951
952
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
953
954
955
956
    new_g3 = dgl.compact_graphs(g3, always_preserve=F.tensor([1, 7], idtype))
    induced_nodes = {
        ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes
    }
957
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
958

959
    assert new_g3.idtype == idtype
960
    assert set(induced_nodes["user"]) == set([0, 1, 2, 7])
961
962
963
964
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
965
966
967
    induced_nodes = {
        ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes
    }
968
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
969
970
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
971
972
    assert set(induced_nodes["user"]) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes["game"]) == set([3, 4, 5, 6])
973
974
975
976
977
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
978
979
980
981
982
        [g1, g2], always_preserve={"game": F.tensor([4, 7], dtype=idtype)}
    )
    induced_nodes = {
        ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in new_g1.ntypes
    }
983
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
984
985
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
986
987
    assert set(induced_nodes["user"]) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes["game"]) == set([3, 4, 5, 6, 7])
988
989
990
991
992
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
993
994
995
996
997
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=idtype)
    )
    induced_nodes = {
        ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in new_g3.ntypes
    }
998
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
999

1000
1001
1002
    assert new_g3.idtype == idtype
    assert new_g4.idtype == idtype

1003
    assert set(induced_nodes["user"]) == set([0, 1, 2, 3, 5, 7])
1004
1005
1006
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

1007

1008
1009
1010
@unittest.skipIf(
    F._default_context_str == "gpu", reason="GPU to simple not implemented"
)
nv-dlasalle's avatar
nv-dlasalle committed
1011
@parametrize_idtype
1012
def test_to_simple(idtype):
1013
1014
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
1015
1016
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0]])
    g.edata["h"] = F.tensor([[3.0], [4.0], [5.0], [6.0]])
1017
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
1018
    u, v = g.all_edges(form="uv", order="eid")
1019
1020
1021
1022
1023
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

1024
    su, sv = sg.all_edges(form="uv", order="eid")
1025
1026
1027
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
1028
    sc = F.asnumpy(sg.edata["count"])
1029
1030
1031
1032
1033
1034
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
1035
1036
    assert F.array_equal(sg.ndata["h"], g.ndata["h"])
    assert "h" not in sg.edata
1037
    # new ndata to sg
1038
1039
    sg.ndata["hh"] = F.tensor([[0.0], [1.0], [2.0]])
    assert "hh" not in g.ndata
1040
1041

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
1042
1043
    assert "h" not in sg.ndata
    assert "h" not in sg.edata
1044

1045
    # test coalesce edge feature
1046
1047
1048
1049
1050
1051
    sg = dgl.to_simple(g, copy_edata=True, aggregator="arbitrary")
    assert F.allclose(sg.edata["h"][1], F.tensor([4.0]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator="sum")
    assert F.allclose(sg.edata["h"][1], F.tensor([10.0]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator="mean")
    assert F.allclose(sg.edata["h"][1], F.tensor([5.0]))
1052

1053
    # heterogeneous graph
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
    g = dgl.heterograph(
        {
            ("user", "follow", "user"): (
                [0, 1, 2, 1, 1, 1],
                [1, 3, 2, 3, 4, 4],
            ),
            ("user", "plays", "game"): (
                [3, 2, 1, 1, 3, 2, 2],
                [5, 3, 4, 4, 5, 3, 3],
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.tensor([0, 1, 2, 3, 4])
    g.nodes["user"].data["hh"] = F.tensor([0, 1, 2, 3, 4])
    g.edges["follow"].data["h"] = F.tensor([0, 1, 2, 3, 4, 5])
    sg, wb = dgl.to_simple(
        g, return_counts="weights", writeback_mapping=True, copy_edata=True
    )
    g.nodes["game"].data["h"] = F.tensor([0, 1, 2, 3, 4, 5])
1075
1076

    for etype in g.canonical_etypes:
1077
        u, v = g.all_edges(form="uv", order="eid", etype=etype)
1078
1079
1080
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
1081
        eid_map = F.asnumpy(wb[etype])
1082

1083
        su, sv = sg.all_edges(form="uv", order="eid", etype=etype)
1084
1085
1086
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
1087
        sw = F.asnumpy(sg.edges[etype].data["weights"])
1088
1089
1090
1091
1092
1093

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
1094
    # shared ndata
1095
1096
1097
1098
1099
    assert F.array_equal(sg.nodes["user"].data["h"], g.nodes["user"].data["h"])
    assert F.array_equal(
        sg.nodes["user"].data["hh"], g.nodes["user"].data["hh"]
    )
    assert "h" not in sg.nodes["game"].data
1100
    # new ndata to sg
1101
1102
    sg.nodes["user"].data["hhh"] = F.tensor([0, 1, 2, 3, 4])
    assert "hhh" not in g.nodes["user"].data
1103
    # share edata
1104
    feat_idx = F.asnumpy(wb[("user", "follow", "user")])
1105
    _, indices = np.unique(feat_idx, return_index=True)
1106
1107
1108
1109
    assert np.array_equal(
        F.asnumpy(sg.edges["follow"].data["h"]),
        F.asnumpy(g.edges["follow"].data["h"])[indices],
    )
1110
1111
1112
1113

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
1114
1115
    assert "h" not in sg.nodes["user"].data
    assert "hh" not in sg.nodes["user"].data
1116

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    # verify DGLGraph.edge_ids() after dgl.to_simple()
    # in case ids are not initialized in underlying coo2csr()
    u = F.tensor([0, 1, 2])
    v = F.tensor([1, 2, 3])
    eids = F.tensor([0, 1, 2])
    g = dgl.graph((u, v))
    assert F.array_equal(g.edge_ids(u, v), eids)
    sg = dgl.to_simple(g)
    assert F.array_equal(sg.edge_ids(u, v), eids)

1127

nv-dlasalle's avatar
nv-dlasalle committed
1128
@parametrize_idtype
1129
def test_to_block(idtype):
1130
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
1131
1132
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
1133
        n_dst_nodes = bg.number_of_nodes("DST/" + ntype)
1134
1135
1136
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
1137
1138
                bg.dstnodes[ntype].data[dgl.NID],
            )
1139
1140
1141
1142
1143
1144

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
1145

1146
1147
        bg_src, bg_dst = bg.all_edges(order="eid")
        src_ans, dst_ans = g.all_edges(order="eid")
1148
1149
1150
1151
1152
1153
1154
1155
1156

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

1157
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
1158
1159
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
1160
            if dst_nodes is not None and ntype in dst_nodes:
1161
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
1162
            else:
1163
                check(g, bg, ntype, etype, None, include_dst_in_src)
1164

1165
    # homogeneous graph
1166
    g = dgl.graph(
1167
1168
        (F.tensor([1, 2], dtype=idtype), F.tensor([2, 3], dtype=idtype))
    )
1169
1170
    dst_nodes = F.tensor([3, 2], dtype=idtype)
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
1171
    check(g, bg, "_N", "_E", dst_nodes)
1172

1173
    src_nodes = bg.srcnodes["_N"].data[dgl.NID]
1174
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
1175
    check(g, bg, "_N", "_E", dst_nodes)
1176
1177

    # heterogeneous graph
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
    g = dgl.heterograph(
        {
            ("A", "AA", "A"): ([0, 2, 1, 3], [1, 3, 2, 4]),
            ("A", "AB", "B"): ([0, 1, 3, 1], [1, 3, 5, 6]),
            ("B", "BA", "A"): ([2, 3], [3, 2]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["A"].data["x"] = F.randn((5, 10))
    g.nodes["B"].data["x"] = F.randn((7, 5))
    g.edges["AA"].data["x"] = F.randn((4, 3))
    g.edges["AB"].data["x"] = F.randn((4, 3))
    g.edges["BA"].data["x"] = F.randn((2, 3))
    g_a = g["AA"]
1193

1194
1195
1196
1197
1198
    def check_features(g, bg):
        for ntype in bg.srctypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.srcnodes[ntype].data[key],
1199
1200
1201
1202
1203
                    F.gather_row(
                        g.nodes[ntype].data[key],
                        bg.srcnodes[ntype].data[dgl.NID],
                    ),
                )
1204
1205
1206
1207
        for ntype in bg.dsttypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.dstnodes[ntype].data[key],
1208
1209
1210
1211
1212
                    F.gather_row(
                        g.nodes[ntype].data[key],
                        bg.dstnodes[ntype].data[dgl.NID],
                    ),
                )
1213
1214
1215
1216
        for etype in bg.canonical_etypes:
            for key in g.edges[etype].data:
                assert F.array_equal(
                    bg.edges[etype].data[key],
1217
1218
1219
1220
                    F.gather_row(
                        g.edges[etype].data[key], bg.edges[etype].data[dgl.EID]
                    ),
                )
1221

1222
    bg = dgl.to_block(g_a)
1223
    check(g_a, bg, "A", "AA", None)
1224
    check_features(g_a, bg)
1225
1226
1227
1228
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
1229
    check(g_a, bg, "A", "AA", None, False)
1230
    check_features(g_a, bg)
1231
1232
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
1233

1234
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=idtype)
1235
    bg = dgl.to_block(g_a, dst_nodes)
1236
    check(g_a, bg, "A", "AA", dst_nodes)
1237
    check_features(g_a, bg)
1238

1239
    g_ab = g["AB"]
1240
1241

    bg = dgl.to_block(g_ab)
1242
    assert bg.idtype == idtype
1243
1244
1245
1246
1247
    assert bg.number_of_nodes("SRC/B") == 4
    assert F.array_equal(
        bg.srcnodes["B"].data[dgl.NID], bg.dstnodes["B"].data[dgl.NID]
    )
    assert bg.number_of_nodes("DST/A") == 0
1248
    checkall(g_ab, bg, None)
1249
    check_features(g_ab, bg)
1250

1251
    dst_nodes = {"B": F.tensor([5, 6, 3, 1], dtype=idtype)}
1252
    bg = dgl.to_block(g, dst_nodes)
1253
1254
1255
1256
1257
    assert bg.number_of_nodes("SRC/B") == 4
    assert F.array_equal(
        bg.srcnodes["B"].data[dgl.NID], bg.dstnodes["B"].data[dgl.NID]
    )
    assert bg.number_of_nodes("DST/A") == 0
1258
    checkall(g, bg, dst_nodes)
1259
    check_features(g, bg)
1260

1261
1262
1263
1264
    dst_nodes = {
        "A": F.tensor([4, 3, 2, 1], dtype=idtype),
        "B": F.tensor([3, 5, 6, 1], dtype=idtype),
    }
1265
1266
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
1267
    check_features(g, bg)
1268

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
    # test specifying lhs_nodes with include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    checkall(g, bg, dst_nodes)
    check_features(g, bg)

    # test without include_dst_in_src
1279
1280
1281
1282
    dst_nodes = {
        "A": F.tensor([4, 3, 2, 1], dtype=idtype),
        "B": F.tensor([3, 5, 6, 1], dtype=idtype),
    }
1283
1284
1285
1286
1287
1288
1289
1290
1291
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)

    # test specifying lhs_nodes without include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
1292
1293
1294
    bg = dgl.to_block(
        g, dst_nodes=dst_nodes, include_dst_in_src=False, src_nodes=src_nodes
    )
1295
1296
1297
1298
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)


1299
@unittest.skipIf(F._default_context_str == "gpu", reason="GPU not implemented")
nv-dlasalle's avatar
nv-dlasalle committed
1300
@parametrize_idtype
1301
def test_remove_edges(idtype):
1302
    def check(g1, etype, g, edges_removed):
1303
1304
        src, dst, eid = g.edges(etype=etype, form="all")
        src1, dst1 = g1.edges(etype=etype, order="eid")
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
1320
        assert g1.idtype == g.idtype
1321

1322
    for fmt in ["coo", "csr", "csc"]:
1323
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
1324
            g = dgl.graph(([0, 2, 1, 3], [1, 3, 2, 4]), idtype=idtype).formats(
1325
1326
                fmt
            )
1327
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1328
1329
            check(g1, None, g, edges_to_remove)

1330
            g = dgl.from_scipy(
1331
1332
1333
1334
1335
                spsp.csr_matrix(
                    ([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)
                ),
                idtype=idtype,
            ).formats(fmt)
1336
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1337
1338
            check(g1, None, g, edges_to_remove)

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
    g = dgl.heterograph(
        {
            ("A", "AA", "A"): ([0, 2, 1, 3], [1, 3, 2, 4]),
            ("A", "AB", "B"): ([0, 1, 3, 1], [1, 3, 5, 6]),
            ("B", "BA", "A"): ([2, 3], [3, 2]),
        },
        idtype=idtype,
    )
    g2 = dgl.remove_edges(
        g,
        {
            "AA": F.tensor([2], idtype),
            "AB": F.tensor([3], idtype),
            "BA": F.tensor([1], idtype),
        },
    )
    check(g2, "AA", g, [2])
    check(g2, "AB", g, [3])
    check(g2, "BA", g, [1])

    g3 = dgl.remove_edges(
        g,
        {
            "AA": F.tensor([], idtype),
            "AB": F.tensor([3], idtype),
            "BA": F.tensor([1], idtype),
        },
    )
    check(g3, "AA", g, [])
    check(g3, "AB", g, [3])
    check(g3, "BA", g, [1])

    g4 = dgl.remove_edges(g, {"AB": F.tensor([3, 1, 2, 0], idtype)})
    check(g4, "AA", g, [])
    check(g4, "AB", g, [3, 1, 2, 0])
    check(g4, "BA", g, [])
1375

1376

nv-dlasalle's avatar
nv-dlasalle committed
1377
@parametrize_idtype
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
1399
    u, v = g.edges(form="uv", order="eid")
1400
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1401
1402
1403
1404
1405
1406
1407
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    g = dgl.add_edges(g, [], [])
    g = dgl.add_edges(g, 0, [])
    g = dgl.add_edges(g, [], 0)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
1408
    u, v = g.edges(form="uv", order="eid")
1409
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1410
1411
1412
1413
1414
1415
1416
1417
1418
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
1419
    u, v = g.edges(form="uv", order="eid")
1420
1421
1422
1423
1424
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
1425
1426
    g.ndata["h"] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata["h"] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
1427
1428
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1429
1430
1431
1432
    e_feat = {
        "h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
        "hh": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
    }
1433
1434
1435
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
1436
    u, v = g.edges(form="uv", order="eid")
1437
1438
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
1439
1440
1441
    assert F.array_equal(g.ndata["h"], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata["h"], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata["hh"], F.tensor([0, 0, 2, 2], dtype=idtype))
1442
1443

    # zero data graph
1444
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1445
1446
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
1447
1448
1449
1450
    e_feat = {
        "h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
        "hh": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
    }
1451
1452
1453
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
1454
    u, v = g.edges(form="uv", order="eid")
1455
1456
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
1457
1458
    assert F.array_equal(g.edata["h"], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata["hh"], F.tensor([2, 2], dtype=idtype))
1459
1460

    # bipartite graph
1461
    g = dgl.heterograph(
1462
1463
1464
1465
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1466
1467
1468
1469
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
1470
1471
    assert g.number_of_nodes("user") == 2
    assert g.number_of_nodes("game") == 3
1472
1473
1474
1475
1476
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
1477
1478
    assert g.number_of_nodes("user") == 2
    assert g.number_of_nodes("game") == 3
1479
1480
1481
1482
1483
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
1484
1485
    assert g.number_of_nodes("user") == 2
    assert g.number_of_nodes("game") == 3
1486
    assert g.number_of_edges() == 5
1487
    u, v = g.edges(form="uv")
1488
1489
1490
1491
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
1492
    g = dgl.heterograph(
1493
1494
1495
1496
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1497
1498
1499
1500
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
1501
1502
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 4
1503
    assert g.number_of_edges() == 4
1504
    u, v = g.edges(form="uv", order="eid")
1505
1506
1507
1508
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
1509
    g = dgl.heterograph(
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edata["h"] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
1521
1522
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1523
1524
1525
1526
    e_feat = {
        "h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
        "hh": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
    }
1527
    g = dgl.add_edges(g, u, v, e_feat)
1528
1529
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 4
1530
    assert g.number_of_edges() == 4
1531
    u, v = g.edges(form="uv", order="eid")
1532
1533
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
1534
1535
1536
1537
1538
1539
1540
1541
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 0], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 2, 0], dtype=idtype)
    )
    assert F.array_equal(g.edata["h"], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata["hh"], F.tensor([0, 0, 2, 2], dtype=idtype))
1542
1543

    # heterogeneous graph
1544
    g = create_test_heterograph3(idtype)
1545
1546
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1547
1548
1549
1550
1551
1552
1553
    g = dgl.add_edges(g, u, v, etype="plays")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 4
    assert g.number_of_nodes("developer") == 2
    assert g.number_of_edges("plays") == 6
    assert g.number_of_edges("develops") == 2
    u, v = g.edges(form="uv", order="eid", etype="plays")
1554
1555
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
1556
1557
1558
1559
1560
1561
1562
1563
1564
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 0, 0], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype)
    )
1565
1566

    # add with feature
1567
    e_feat = {"h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
1568
1569
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g = dgl.add_edges(g, u, v, data=e_feat, etype="develops")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 4
    assert g.number_of_nodes("developer") == 3
    assert g.number_of_edges("plays") == 6
    assert g.number_of_edges("develops") == 4
    u, v = g.edges(form="uv", order="eid", etype="develops")
1580
1581
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
1582
1583
1584
1585
1586
1587
1588
1589
1590
    assert F.array_equal(
        g.nodes["developer"].data["h"], F.tensor([3, 3, 0], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["develops"].data["h"], F.tensor([0, 0, 2, 2], dtype=idtype)
    )
1591

1592

nv-dlasalle's avatar
nv-dlasalle committed
1593
@parametrize_idtype
1594
1595
1596
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
1597
    g.ndata["h"] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
1598
1599
1600
    new_g = dgl.add_nodes(g, 1)
    assert g.number_of_nodes() == 3
    assert new_g.number_of_nodes() == 4
1601
    assert F.array_equal(new_g.ndata["h"], F.tensor([1, 1, 1, 0], dtype=idtype))
1602
1603

    # zero node graph
1604
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
1605
1606
1607
1608
    g.ndata["h"] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_nodes(
        g, 1, data={"h": F.copy_to(F.tensor([2], dtype=idtype), ctx=F.ctx())}
    )
1609
    assert g.number_of_nodes() == 4
1610
    assert F.array_equal(g.ndata["h"], F.tensor([1, 1, 1, 2], dtype=idtype))
1611
1612

    # bipartite graph
1613
    g = dgl.heterograph(
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
    g = dgl.add_nodes(
        g,
        2,
        data={"h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())},
        ntype="user",
    )
    assert g.number_of_nodes("user") == 4
    assert g.number_of_nodes("game") == 3
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([0, 0, 2, 2], dtype=idtype)
    )
    g = dgl.add_nodes(g, 2, ntype="game")
    assert g.number_of_nodes("user") == 4
    assert g.number_of_nodes("game") == 5
1632
1633

    # heterogeneous graph
1634
    g = create_test_heterograph3(idtype)
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
    g = dgl.add_nodes(g, 1, ntype="user")
    g = dgl.add_nodes(
        g,
        2,
        data={"h": F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())},
        ntype="game",
    )
    assert g.number_of_nodes("user") == 4
    assert g.number_of_nodes("game") == 4
    assert g.number_of_nodes("developer") == 2
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 1, 0], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 2, 2], dtype=idtype)
    )
1651

1652

nv-dlasalle's avatar
nv-dlasalle committed
1653
@parametrize_idtype
1654
1655
1656
1657
1658
1659
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
1660
    u, v = g.edges(form="uv", order="eid")
1661
1662
1663
1664
1665
1666
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
1667
    u, v = g.edges(form="uv", order="eid")
1668
1669
1670
1671
1672
1673
1674
1675
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
1676
    g.ndata["h"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
1677
1678
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
1679
    assert F.array_equal(g.ndata["h"], F.tensor([1, 2, 3], dtype=idtype))
1680
1681
1682

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
1683
    g.edata["h"] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
1684
1685
    g = dgl.remove_edges(g, 0)
    assert g.number_of_edges() == 1
1686
    assert F.array_equal(g.edata["h"], F.tensor([2], dtype=idtype))
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696

    # invalid eid
    assert_fail = False
    try:
        g = dgl.remove_edges(g, 1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
1697
    g = dgl.heterograph(
1698
1699
1700
1701
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1702
1703
1704
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
1705
    u, v = g.edges(form="uv", order="eid")
1706
1707
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1708
    g = dgl.heterograph(
1709
1710
1711
1712
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1713
1714
1715
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
1716
    u, v = g.edges(form="uv", order="eid")
1717
1718
1719
1720
1721
1722
1723
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has data
1724
    g = dgl.heterograph(
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edata["h"] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
1736
1737
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
1738
1739
1740
1741
1742
1743
1744
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2, 2], dtype=idtype)
    )
    assert F.array_equal(g.edata["h"], F.tensor([1], dtype=idtype))
1745
1746

    # heterogeneous graph
1747
    g = create_test_heterograph3(idtype)
1748
1749
1750
1751
1752
1753
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx()
    )
    g = dgl.remove_edges(g, 1, etype="plays")
    assert g.number_of_edges("plays") == 3
    u, v = g.edges(form="uv", order="eid", etype="plays")
1754
1755
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
1756
1757
1758
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 3, 4], dtype=idtype)
    )
1759
    # remove all edges of 'develops'
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
    g = dgl.remove_edges(g, [0, 1], etype="develops")
    assert g.number_of_edges("develops") == 0
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["game"].data["h"], F.tensor([2, 2], dtype=idtype)
    )
    assert F.array_equal(
        g.nodes["developer"].data["h"], F.tensor([3, 3], dtype=idtype)
    )
1771

1772
1773
1774
1775
1776
1777
1778
1779
1780
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 2)
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
1781
1782
1783
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([2, 0, 2], dtype=F.int64)
    )
1784
1785
1786
1787

    bg_r = dgl.remove_edges(bg, [0, 2])
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
1788
1789
1790
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64)
    )
1791
1792
1793
1794

    bg_r = dgl.remove_edges(bg, F.tensor([0, 2], dtype=idtype))
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
1795
1796
1797
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([1, 0, 2], dtype=F.int64)
    )
1798
1799

    # batched heterogeneous graph
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
    g1 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 1], [1, 2]),
            ("user", "plays", "game"): ([1, 3], [0, 1]),
        },
        num_nodes_dict={"user": 4, "game": 3},
        idtype=idtype,
        device=ctx,
    )
    g2 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 2], [3, 4]),
            ("user", "plays", "game"): ([], []),
        },
        num_nodes_dict={"user": 6, "game": 2},
        idtype=idtype,
        device=ctx,
    )
    g3 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([], []),
            ("user", "plays", "game"): ([1, 2], [1, 2]),
        },
        idtype=idtype,
        device=ctx,
    )
1826
    bg = dgl.batch([g1, g2, g3])
1827
    bg_r = dgl.remove_edges(bg, 1, etype="follows")
1828
1829
1830
1831
    assert bg.batch_size == bg_r.batch_size
    ntypes = bg.ntypes
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1832
1833
1834
1835
1836
1837
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([1, 2, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), bg.batch_num_edges("plays")
    )
1838

1839
    bg_r = dgl.remove_edges(bg, 2, etype="plays")
1840
1841
1842
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1843
1844
1845
1846
1847
1848
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([2, 0, 1], dtype=F.int64)
    )
1849

1850
    bg_r = dgl.remove_edges(bg, [0, 1, 3], etype="follows")
1851
1852
1853
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1854
1855
1856
1857
1858
1859
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 1, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("plays"), bg_r.batch_num_edges("plays")
    )
1860

1861
    bg_r = dgl.remove_edges(bg, [1, 2], etype="plays")
1862
1863
1864
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1865
1866
1867
1868
1869
1870
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )
1871

1872
1873
1874
    bg_r = dgl.remove_edges(
        bg, F.tensor([0, 1, 3], dtype=idtype), etype="follows"
    )
1875
1876
1877
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1878
1879
1880
1881
1882
1883
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 1, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("plays"), bg_r.batch_num_edges("plays")
    )
1884

1885
    bg_r = dgl.remove_edges(bg, F.tensor([1, 2], dtype=idtype), etype="plays")
1886
1887
1888
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1889
1890
1891
1892
1893
1894
1895
1896
1897
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )


@parametrize_idtype
1898
1899
1900
1901
1902
1903
1904
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
1905
    u, v = g.edges(form="uv", order="eid")
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
1918
    u, v = g.edges(form="uv", order="eid")
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
1932
1933
    g.ndata["hv"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata["he"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
1934
1935
1936
    g = dgl.remove_nodes(g, F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
1937
    u, v = g.edges(form="uv", order="eid")
1938
1939
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1940
1941
    assert F.array_equal(g.ndata["hv"], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata["he"], F.tensor([3], dtype=idtype))
1942
1943

    # node id larger than current max node id
1944
    g = dgl.heterograph(
1945
1946
1947
1948
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1949
    n = 0
1950
1951
1952
    g = dgl.remove_nodes(g, n, ntype="user")
    assert g.number_of_nodes("user") == 1
    assert g.number_of_nodes("game") == 3
1953
    assert g.number_of_edges() == 1
1954
    u, v = g.edges(form="uv", order="eid")
1955
1956
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1957
    g = dgl.heterograph(
1958
1959
1960
1961
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1962
    n = [1]
1963
1964
1965
    g = dgl.remove_nodes(g, n, ntype="user")
    assert g.number_of_nodes("user") == 1
    assert g.number_of_nodes("game") == 3
1966
    assert g.number_of_edges() == 1
1967
    u, v = g.edges(form="uv", order="eid")
1968
1969
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1970
    g = dgl.heterograph(
1971
1972
1973
1974
        {("user", "plays", "game"): ([0, 1], [1, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
1975
    n = F.tensor([0], dtype=idtype)
1976
1977
1978
    g = dgl.remove_nodes(g, n, ntype="game")
    assert g.number_of_nodes("user") == 2
    assert g.number_of_nodes("game") == 2
1979
    assert g.number_of_edges() == 2
1980
    u, v = g.edges(form="uv", order="eid")
1981
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
1982
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
1983
1984

    # heterogeneous graph
1985
    g = create_test_heterograph3(idtype)
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
    g.edges["plays"].data["h"] = F.copy_to(
        F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx()
    )
    g = dgl.remove_nodes(g, 0, ntype="game")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 1
    assert g.number_of_nodes("developer") == 2
    assert g.number_of_edges("plays") == 2
    assert g.number_of_edges("develops") == 1
    assert F.array_equal(
        g.nodes["user"].data["h"], F.tensor([1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(g.nodes["game"].data["h"], F.tensor([2], dtype=idtype))
    assert F.array_equal(
        g.nodes["developer"].data["h"], F.tensor([3, 3], dtype=idtype)
    )
    u, v = g.edges(form="uv", order="eid", etype="plays")
2003
2004
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
2005
2006
2007
2008
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([3, 4], dtype=idtype)
    )
    u, v = g.edges(form="uv", order="eid", etype="develops")
2009
2010
2011
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))

2012
2013
2014
2015
2016
2017
2018
2019
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1)
    assert bg_r.batch_size == bg.batch_size
2020
2021
2022
2023
2024
2025
    assert F.array_equal(
        bg_r.batch_num_nodes(), F.tensor([4, 0, 5], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([0, 0, 3], dtype=F.int64)
    )
2026
2027
2028

    bg_r = dgl.remove_nodes(bg, [1, 7])
    assert bg_r.batch_size == bg.batch_size
2029
2030
2031
2032
2033
2034
    assert F.array_equal(
        bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64)
    )
2035
2036
2037

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 7], dtype=idtype))
    assert bg_r.batch_size == bg.batch_size
2038
2039
2040
2041
2042
2043
    assert F.array_equal(
        bg_r.batch_num_nodes(), F.tensor([4, 0, 4], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges(), F.tensor([0, 0, 1], dtype=F.int64)
    )
2044
2045

    # batched heterogeneous graph
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
    g1 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 1], [1, 2]),
            ("user", "plays", "game"): ([1, 3], [0, 1]),
        },
        num_nodes_dict={"user": 4, "game": 3},
        idtype=idtype,
        device=ctx,
    )
    g2 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 2], [3, 4]),
            ("user", "plays", "game"): ([], []),
        },
        num_nodes_dict={"user": 6, "game": 2},
        idtype=idtype,
        device=ctx,
    )
    g3 = dgl.heterograph(
        {
            ("user", "follows", "user"): ([], []),
            ("user", "plays", "game"): ([1, 2], [1, 2]),
        },
        idtype=idtype,
        device=ctx,
    )
2072
    bg = dgl.batch([g1, g2, g3])
2073
    bg_r = dgl.remove_nodes(bg, 1, ntype="user")
2074
    assert bg_r.batch_size == bg.batch_size
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
    assert F.array_equal(
        bg_r.batch_num_nodes("user"), F.tensor([3, 6, 3], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_nodes("game"), bg_r.batch_num_nodes("game")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 2, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 2], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(bg, 6, ntype="game")
2089
    assert bg_r.batch_size == bg.batch_size
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
    assert F.array_equal(
        bg.batch_num_nodes("user"), bg_r.batch_num_nodes("user")
    )
    assert F.array_equal(
        bg_r.batch_num_nodes("game"), F.tensor([3, 2, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([2, 0, 1], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(bg, [1, 5, 6, 11], ntype="user")
2104
    assert bg_r.batch_size == bg.batch_size
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
    assert F.array_equal(
        bg_r.batch_num_nodes("user"), F.tensor([3, 4, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_nodes("game"), bg_r.batch_num_nodes("game")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 1, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(bg, [0, 3, 4, 7], ntype="game")
2119
    assert bg_r.batch_size == bg.batch_size
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
    assert F.array_equal(
        bg.batch_num_nodes("user"), bg_r.batch_num_nodes("user")
    )
    assert F.array_equal(
        bg_r.batch_num_nodes("game"), F.tensor([2, 0, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(
        bg, F.tensor([1, 5, 6, 11], dtype=idtype), ntype="user"
    )
2136
    assert bg_r.batch_size == bg.batch_size
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
    assert F.array_equal(
        bg_r.batch_num_nodes("user"), F.tensor([3, 4, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_nodes("game"), bg_r.batch_num_nodes("game")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("follows"), F.tensor([0, 1, 0], dtype=F.int64)
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )

    bg_r = dgl.remove_nodes(
        bg, F.tensor([0, 3, 4, 7], dtype=idtype), ntype="game"
    )
2153
    assert bg_r.batch_size == bg.batch_size
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
    assert F.array_equal(
        bg.batch_num_nodes("user"), bg_r.batch_num_nodes("user")
    )
    assert F.array_equal(
        bg_r.batch_num_nodes("game"), F.tensor([2, 0, 2], dtype=F.int64)
    )
    assert F.array_equal(
        bg.batch_num_edges("follows"), bg_r.batch_num_edges("follows")
    )
    assert F.array_equal(
        bg_r.batch_num_edges("plays"), F.tensor([1, 0, 1], dtype=F.int64)
    )
2166

2167

nv-dlasalle's avatar
nv-dlasalle committed
2168
@parametrize_idtype
2169
2170
def test_add_selfloop(idtype):
    # homogeneous graph
2171
2172

    # test for fill_data is float
2173
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
2174
2175
2176
2177
2178
    g.edata["he"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata["he1"] = F.copy_to(
        F.tensor([[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]), ctx=F.ctx()
    )
    g.ndata["hn"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
2179
2180
2181
    g = dgl.add_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
2182
    u, v = g.edges(form="uv", order="eid")
2183
2184
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
    assert F.array_equal(
        g.edata["he"], F.tensor([1, 2, 3, 1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edata["he1"],
        F.tensor(
            [
                [0.0, 1.0],
                [2.0, 3.0],
                [4.0, 5.0],
                [1.0, 1.0],
                [1.0, 1.0],
                [1.0, 1.0],
            ]
        ),
    )
2201
2202
2203

    # test for fill_data is int
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
2204
2205
2206
2207
2208
    g.edata["he"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata["he1"] = F.copy_to(
        F.tensor([[0, 1], [2, 3], [4, 5]], dtype=idtype), ctx=F.ctx()
    )
    g.ndata["hn"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
2209
2210
2211
    g = dgl.add_self_loop(g, fill_data=1)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
2212
    u, v = g.edges(form="uv", order="eid")
2213
2214
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
2215
2216
2217
2218
2219
2220
2221
2222
2223
    assert F.array_equal(
        g.edata["he"], F.tensor([1, 2, 3, 1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edata["he1"],
        F.tensor(
            [[0, 1], [2, 3], [4, 5], [1, 1], [1, 1], [1, 1]], dtype=idtype
        ),
    )
2224
2225
2226

    # test for fill_data is str
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
2227
2228
2229
2230
2231
2232
    g.edata["he"] = F.copy_to(F.tensor([1.0, 2.0, 3.0]), ctx=F.ctx())
    g.edata["he1"] = F.copy_to(
        F.tensor([[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]), ctx=F.ctx()
    )
    g.ndata["hn"] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data="sum")
2233
2234
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
2235
    u, v = g.edges(form="uv", order="eid")
2236
2237
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
    assert F.array_equal(
        g.edata["he"], F.tensor([1.0, 2.0, 3.0, 3.0, 2.0, 1.0])
    )
    assert F.array_equal(
        g.edata["he1"],
        F.tensor(
            [
                [0.0, 1.0],
                [2.0, 3.0],
                [4.0, 5.0],
                [4.0, 5.0],
                [2.0, 3.0],
                [0.0, 1.0],
            ]
        ),
    )
2254
2255

    # bipartite graph
2256
    g = dgl.heterograph(
2257
2258
2259
2260
        {("user", "plays", "game"): ([0, 1, 2], [1, 2, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
2261
2262
2263
2264
2265
2266
2267
2268
    # nothing will happend
    raise_error = False
    try:
        g = dgl.add_self_loop(g)
    except:
        raise_error = True
    assert raise_error

2269
    # test for fill_data is float
2270
    g = create_test_heterograph5(idtype)
2271
2272
2273
2274
2275
2276
2277
2278
2279
    g.edges["follows"].data["h1"] = F.copy_to(
        F.tensor([[0.0, 1.0], [1.0, 2.0]]), ctx=F.ctx()
    )
    g = dgl.add_self_loop(g, etype="follows")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 2
    assert g.number_of_edges("follows") == 5
    assert g.number_of_edges("plays") == 2
    u, v = g.edges(form="uv", order="eid", etype="follows")
2280
2281
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
    assert F.array_equal(
        g.edges["follows"].data["h"], F.tensor([1, 2, 1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["follows"].data["h1"],
        F.tensor([[0.0, 1.0], [1.0, 2.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]),
    )
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 2], dtype=idtype)
    )
2292
2293
2294

    # test for fill_data is int
    g = create_test_heterograph5(idtype)
2295
2296
2297
2298
2299
2300
2301
2302
2303
    g.edges["follows"].data["h1"] = F.copy_to(
        F.tensor([[0, 1], [1, 2]], dtype=idtype), ctx=F.ctx()
    )
    g = dgl.add_self_loop(g, fill_data=1, etype="follows")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 2
    assert g.number_of_edges("follows") == 5
    assert g.number_of_edges("plays") == 2
    u, v = g.edges(form="uv", order="eid", etype="follows")
2304
2305
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
    assert F.array_equal(
        g.edges["follows"].data["h"], F.tensor([1, 2, 1, 1, 1], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["follows"].data["h1"],
        F.tensor([[0, 1], [1, 2], [1, 1], [1, 1], [1, 1]], dtype=idtype),
    )
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 2], dtype=idtype)
    )
2316

2317
    # test for fill_data is str
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (
                F.tensor([1, 2], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
            ("user", "plays", "game"): (
                F.tensor([0, 1], dtype=idtype),
                F.tensor([0, 1], dtype=idtype),
            ),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h"] = F.copy_to(
        F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx()
    )
    g.nodes["game"].data["h"] = F.copy_to(
        F.tensor([2, 2], dtype=idtype), ctx=F.ctx()
    )
    g.edges["follows"].data["h"] = F.copy_to(F.tensor([1.0, 2.0]), ctx=F.ctx())
    g.edges["follows"].data["h1"] = F.copy_to(
        F.tensor([[0.0, 1.0], [1.0, 2.0]]), ctx=F.ctx()
    )
    g.edges["plays"].data["h"] = F.copy_to(F.tensor([1.0, 2.0]), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data="mean", etype="follows")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 2
    assert g.number_of_edges("follows") == 5
    assert g.number_of_edges("plays") == 2
    u, v = g.edges(form="uv", order="eid", etype="follows")
2349
2350
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
2351
2352
2353
2354
2355
2356
2357
2358
    assert F.array_equal(
        g.edges["follows"].data["h"], F.tensor([1.0, 2.0, 1.0, 2.0, 0.0])
    )
    assert F.array_equal(
        g.edges["follows"].data["h1"],
        F.tensor([[0.0, 1.0], [1.0, 2.0], [0.0, 1.0], [1.0, 2.0], [0.0, 0.0]]),
    )
    assert F.array_equal(g.edges["plays"].data["h"], F.tensor([1.0, 2.0]))
2359

2360
2361
    raise_error = False
    try:
2362
        g = dgl.add_self_loop(g, etype="plays")
2363
2364
2365
2366
    except:
        raise_error = True
    assert raise_error

2367

nv-dlasalle's avatar
nv-dlasalle committed
2368
@parametrize_idtype
2369
2370
2371
def test_remove_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 0, 1], [1, 0, 0, 2]), idtype=idtype, device=F.ctx())
2372
    g.edata["he"] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
2373
2374
2375
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
2376
    assert F.array_equal(g.edata["he"], F.tensor([1, 4], dtype=idtype))
2377
2378

    # bipartite graph
2379
    g = dgl.heterograph(
2380
2381
2382
2383
        {("user", "plays", "game"): ([0, 1, 2], [1, 2, 2])},
        idtype=idtype,
        device=F.ctx(),
    )
2384
2385
2386
    # nothing will happend
    raise_error = False
    try:
2387
        g = dgl.remove_self_loop(g, etype="plays")
2388
2389
2390
2391
    except:
        raise_error = True
    assert raise_error

2392
    g = create_test_heterograph4(idtype)
2393
2394
2395
2396
2397
2398
    g = dgl.remove_self_loop(g, etype="follows")
    assert g.number_of_nodes("user") == 3
    assert g.number_of_nodes("game") == 2
    assert g.number_of_edges("follows") == 2
    assert g.number_of_edges("plays") == 2
    u, v = g.edges(form="uv", order="eid", etype="follows")
2399
2400
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
2401
2402
2403
2404
2405
2406
    assert F.array_equal(
        g.edges["follows"].data["h"], F.tensor([2, 4], dtype=idtype)
    )
    assert F.array_equal(
        g.edges["plays"].data["h"], F.tensor([1, 2], dtype=idtype)
    )
2407
2408
2409

    raise_error = False
    try:
2410
        g = dgl.remove_self_loop(g, etype="plays")
2411
2412
2413
    except:
        raise_error = True
    assert raise_error
2414

2415
    # batch information
2416
2417
2418
2419
2420
    g = dgl.graph(
        ([0, 0, 0, 1, 3, 3, 4], [1, 0, 0, 2, 3, 4, 4]),
        idtype=idtype,
        device=F.ctx(),
    )
2421
2422
2423
2424
2425
2426
2427
2428
    g.set_batch_num_nodes(F.tensor([3, 2], dtype=F.int64))
    g.set_batch_num_edges(F.tensor([4, 3], dtype=F.int64))
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 3
    assert F.array_equal(g.batch_num_nodes(), F.tensor([3, 2], dtype=F.int64))
    assert F.array_equal(g.batch_num_edges(), F.tensor([2, 1], dtype=F.int64))

2429

nv-dlasalle's avatar
nv-dlasalle committed
2430
@parametrize_idtype
2431
def test_reorder_graph(idtype):
2432
2433
2434
2435
2436
    g = dgl.graph(
        ([0, 1, 2, 3, 4], [2, 2, 3, 2, 3]), idtype=idtype, device=F.ctx()
    )
    g.ndata["h"] = F.copy_to(F.randn((g.num_nodes(), 3)), ctx=F.ctx())
    g.edata["w"] = F.copy_to(F.randn((g.num_edges(), 2)), ctx=F.ctx())
2437

2438
    # call with default: node_permute_algo=None, edge_permute_algo='src'
2439
    rg = dgl.reorder_graph(g)
2440
2441
2442
2443
2444
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'rcmk' node_permute_algo
2445
    rg = dgl.reorder_graph(g, node_permute_algo="rcmk")
2446
2447
2448
2449
2450
2451
    assert dgl.NID in rg.ndata.keys()
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'dst' edge_permute_algo
2452
    rg = dgl.reorder_graph(g, edge_permute_algo="dst")
2453
2454
2455
2456
2457
2458
    dst = F.asnumpy(rg.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # call with unknown edge_permute_algo
    raise_error = False
    try:
2459
        dgl.reorder_graph(g, edge_permute_algo="none")
2460
2461
2462
    except:
        raise_error = True
    assert raise_error
2463
2464

    # reorder back to original according to stored ids
2465
2466
2467
2468
2469
2470
2471
2472
    rg = dgl.reorder_graph(g, node_permute_algo="rcmk")
    rg2 = dgl.reorder_graph(
        rg,
        "custom",
        permute_config={"nodes_perm": np.argsort(F.asnumpy(rg.ndata[dgl.NID]))},
    )
    assert F.array_equal(g.ndata["h"], rg2.ndata["h"])
    assert F.array_equal(g.edata["w"], rg2.edata["w"])
2473
2474

    # do not store ids
2475
    rg = dgl.reorder_graph(g, store_ids=False)
2476
2477
2478
2479
    assert not dgl.NID in rg.ndata.keys()
    assert not dgl.EID in rg.edata.keys()

    # metis does not work on windows.
2480
    if os.name == "nt":
2481
2482
2483
2484
2485
2486
2487
2488
        pass
    else:
        # metis_partition may fail for small graph.
        mg = create_large_graph(1000).to(F.ctx())

        # call with metis strategy, but k is not specified
        raise_error = False
        try:
2489
            dgl.reorder_graph(mg, node_permute_algo="metis")
2490
2491
2492
2493
2494
2495
2496
        except:
            raise_error = True
        assert raise_error

        # call with metis strategy, k is specified
        raise_error = False
        try:
2497
2498
2499
            dgl.reorder_graph(
                mg, node_permute_algo="metis", permute_config={"k": 2}
            )
2500
2501
2502
2503
2504
2505
2506
2507
        except:
            raise_error = True
        assert not raise_error

    # call with qualified nodes_perm specified
    nodes_perm = np.random.permutation(g.num_nodes())
    raise_error = False
    try:
2508
2509
2510
2511
2512
        dgl.reorder_graph(
            g,
            node_permute_algo="custom",
            permute_config={"nodes_perm": nodes_perm},
        )
2513
2514
2515
2516
2517
2518
2519
    except:
        raise_error = True
    assert not raise_error

    # call with unqualified nodes_perm specified
    raise_error = False
    try:
2520
2521
2522
2523
2524
        dgl.reorder_graph(
            g,
            node_permute_algo="custom",
            permute_config={"nodes_perm": nodes_perm[: g.num_nodes() - 1]},
        )
2525
2526
2527
2528
2529
2530
2531
    except:
        raise_error = True
    assert raise_error

    # call with unsupported strategy
    raise_error = False
    try:
2532
        dgl.reorder_graph(g, node_permute_algo="cmk")
2533
2534
2535
2536
2537
2538
2539
    except:
        raise_error = True
    assert raise_error

    # heterograph: not supported
    raise_error = False
    try:
2540
2541
2542
2543
2544
        hg = dgl.heterogrpah(
            {("user", "follow", "user"): ([0, 1], [1, 2])},
            idtype=idtype,
            device=F.ctx(),
        )
2545
        dgl.reorder_graph(hg)
2546
2547
2548
2549
    except:
        raise_error = True
    assert raise_error

2550
2551
    # TODO: shall we fix them?
    # add 'csc' format if needed
2552
2553
2554
2555
    # fg = g.formats('csr')
    # assert 'csc' not in sum(fg.formats().values(), [])
    # rfg = dgl.reorder_graph(fg)
    # assert 'csc' in sum(rfg.formats().values(), [])
2556

2557

2558
2559
2560
2561
@unittest.skipIf(
    dgl.backend.backend_name == "tensorflow",
    reason="TF doesn't support a slicing operation",
)
nv-dlasalle's avatar
nv-dlasalle committed
2562
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
2563
2564
2565
2566
2567
2568
2569
def test_norm_by_dst(idtype):
    # Case1: A homogeneous graph
    g = dgl.graph(([0, 1, 1], [1, 1, 2]), idtype=idtype, device=F.ctx())
    eweight = dgl.norm_by_dst(g)
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

    # Case2: A heterogeneous graph
2570
2571
2572
2573
2574
2575
2576
2577
2578
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 1], [1, 2]),
            ("user", "plays", "game"): ([0, 1, 1], [1, 1, 2]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    eweight = dgl.norm_by_dst(g, etype=("user", "plays", "game"))
Mufei Li's avatar
Mufei Li committed
2579
2580
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

2581

nv-dlasalle's avatar
nv-dlasalle committed
2582
@parametrize_idtype
2583
2584
def test_module_add_self_loop(idtype):
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
2585
2586
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
    g.edata["w"] = F.randn((g.num_edges(), 3))
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597

    # Case1: add self-loops with the default setting
    transform = dgl.AddSelfLoop()
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 4
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
2598
2599
    assert "h" in new_g.ndata
    assert "w" in new_g.edata
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610

    # Case2: Remove self-loops first to avoid duplicate ones
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 5
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
2611
2612
    assert "h" in new_g.ndata
    assert "w" in new_g.edata
2613
2614

    # Create a heterogeneous graph
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): ([0], [1]),
            ("user", "follows", "user"): ([1], [3]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h1"] = F.randn((4, 2))
    g.edges["plays"].data["w1"] = F.randn((1, 3))
    g.nodes["game"].data["h2"] = F.randn((2, 4))
    g.edges["follows"].data["w2"] = F.randn((1, 5))
2627
2628
2629
2630
2631
2632
2633
2634
2635

    # Case3: add self-loops for a heterogeneous graph
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
2636
2637
2638
2639
2640
2641
    assert new_g.num_edges("plays") == 1
    assert new_g.num_edges("follows") == 5
    assert "h1" in new_g.nodes["user"].data
    assert "h2" in new_g.nodes["game"].data
    assert "w1" in new_g.edges["plays"].data
    assert "w2" in new_g.edges["follows"].data
2642
2643
2644
2645
2646
2647
2648
2649

    # Case4: add self-etypes for a heterogeneous graph
    transform = dgl.AddSelfLoop(new_etypes=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
2650
2651
2652
2653
        ("user", "plays", "game"),
        ("user", "follows", "user"),
        ("user", "self", "user"),
        ("game", "self", "game"),
2654
2655
2656
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
2657
2658
2659
2660
2661
2662
2663
2664
    assert new_g.num_edges("plays") == 1
    assert new_g.num_edges("follows") == 5
    assert new_g.num_edges(("user", "self", "user")) == 4
    assert new_g.num_edges(("game", "self", "game")) == 2
    assert "h1" in new_g.nodes["user"].data
    assert "h2" in new_g.nodes["game"].data
    assert "w1" in new_g.edges["plays"].data
    assert "w2" in new_g.edges["follows"].data
2665

2666

nv-dlasalle's avatar
nv-dlasalle committed
2667
@parametrize_idtype
2668
2669
2670
2671
2672
def test_module_remove_self_loop(idtype):
    transform = dgl.RemoveSelfLoop()

    # Case1: homogeneous graph
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
2673
2674
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
    g.edata["w"] = F.randn((g.num_edges(), 3))
2675
2676
2677
2678
2679
2680
2681
2682
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 1
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2)}
2683
2684
    assert "h" in new_g.ndata
    assert "w" in new_g.edata
2685
2686

    # Case2: heterogeneous graph
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): ([0, 1], [1, 1]),
            ("user", "follows", "user"): ([1, 2], [2, 2]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["user"].data["h1"] = F.randn((3, 2))
    g.edges["plays"].data["w1"] = F.randn((2, 3))
    g.nodes["game"].data["h2"] = F.randn((2, 4))
    g.edges["follows"].data["w2"] = F.randn((2, 5))
2699
2700
2701
2702
2703
2704
2705
2706

    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
2707
2708
2709
2710
2711
2712
    assert new_g.num_edges("plays") == 2
    assert new_g.num_edges("follows") == 1
    assert "h1" in new_g.nodes["user"].data
    assert "h2" in new_g.nodes["game"].data
    assert "w1" in new_g.edges["plays"].data
    assert "w2" in new_g.edges["follows"].data
2713

2714

nv-dlasalle's avatar
nv-dlasalle committed
2715
@parametrize_idtype
2716
2717
2718
2719
2720
def test_module_add_reverse(idtype):
    transform = dgl.AddReverse()

    # Case1: Add reverse edges for a homogeneous graph
    g = dgl.graph(([0], [1]), idtype=idtype, device=F.ctx())
2721
2722
    g.ndata["h"] = F.randn((g.num_nodes(), 3))
    g.edata["w"] = F.randn((g.num_edges(), 2))
2723
2724
2725
2726
2727
2728
2729
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
2730
2731
2732
2733
2734
2735
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert F.allclose(g.edata["w"], F.narrow_row(new_g.edata["w"], 0, 1))
    assert F.allclose(
        F.narrow_row(new_g.edata["w"], 1, 2),
        F.zeros((1, 2), F.float32, F.ctx()),
    )
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745

    # Case2: Add reverse edges for a homogeneous graph and copy edata
    transform = dgl.AddReverse(copy_edata=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
2746
2747
2748
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert F.allclose(g.edata["w"], F.narrow_row(new_g.edata["w"], 0, 1))
    assert F.allclose(g.edata["w"], F.narrow_row(new_g.edata["w"], 1, 2))
2749
2750

    # Case3: Add reverse edges for a heterogeneous graph
2751
2752
2753
2754
2755
2756
2757
    g = dgl.heterograph(
        {
            ("user", "plays", "game"): ([0, 1], [1, 1]),
            ("user", "follows", "user"): ([1, 2], [2, 2]),
        },
        device=F.ctx(),
    )
2758
2759
2760
2761
2762
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
2763
2764
2765
2766
        ("user", "plays", "game"),
        ("user", "follows", "user"),
        ("game", "rev_plays", "user"),
    }
2767
2768
2769
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

2770
    src, dst = new_g.edges(etype="plays")
2771
2772
2773
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2774
    src, dst = new_g.edges(etype="follows")
2775
2776
2777
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2), (2, 1)}

2778
    src, dst = new_g.edges(etype="rev_plays")
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    # Case4: Enforce reverse edge types for symmetric canonical edge types
    transform = dgl.AddReverse(sym_new_etype=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
2789
2790
2791
2792
2793
        ("user", "plays", "game"),
        ("user", "follows", "user"),
        ("game", "rev_plays", "user"),
        ("user", "rev_follows", "user"),
    }
2794
2795
2796
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

2797
    src, dst = new_g.edges(etype="plays")
2798
2799
2800
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2801
    src, dst = new_g.edges(etype="follows")
2802
2803
2804
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2)}

2805
    src, dst = new_g.edges(etype="rev_plays")
2806
2807
2808
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

2809
    src, dst = new_g.edges(etype="rev_follows")
2810
2811
2812
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(2, 1), (2, 2)}

2813

2814
2815
2816
@unittest.skipIf(
    F._default_context_str == "gpu", reason="GPU not supported for to_simple"
)
nv-dlasalle's avatar
nv-dlasalle committed
2817
@parametrize_idtype
2818
2819
2820
def test_module_to_simple(idtype):
    transform = dgl.ToSimple()
    g = dgl.graph(([0, 1, 1], [1, 2, 2]), idtype=idtype, device=F.ctx())
2821
2822
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
    g.edata["w"] = F.tensor([[0.1], [0.2], [0.3]])
2823
2824
2825
2826
2827
2828
2829
2830
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == g.num_nodes()
    assert sg.num_edges() == 2
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}
2831
2832
    assert F.allclose(sg.edata["count"], F.tensor([1, 2]))
    assert F.allclose(sg.ndata["h"], g.ndata["h"])
2833

2834
2835
2836
2837
2838
2839
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): ([0, 1, 1], [1, 2, 2]),
            ("user", "plays", "game"): ([0, 1, 0], [1, 1, 1]),
        }
    )
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.ntypes == g.ntypes
    assert sg.canonical_etypes == g.canonical_etypes
    for nty in sg.ntypes:
        assert sg.num_nodes(nty) == g.num_nodes(nty)
    for ety in sg.canonical_etypes:
        assert sg.num_edges(ety) == 2

2850
    src, dst = sg.edges(etype="follows")
2851
2852
2853
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}

2854
    src, dst = sg.edges(etype="plays")
2855
2856
2857
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2858

nv-dlasalle's avatar
nv-dlasalle committed
2859
@parametrize_idtype
2860
2861
2862
def test_module_line_graph(idtype):
    transform = dgl.LineGraph()
    g = dgl.graph(([0, 1, 1], [1, 0, 2]), idtype=idtype, device=F.ctx())
2863
2864
    g.ndata["h"] = F.tensor([[0.0], [1.0], [2.0]])
    g.edata["w"] = F.tensor([[0.0], [0.1], [0.2]])
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (0, 2), (1, 0)}

    transform = dgl.LineGraph(backtracking=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

2882

nv-dlasalle's avatar
nv-dlasalle committed
2883
@parametrize_idtype
2884
2885
2886
def test_module_khop_graph(idtype):
    transform = dgl.KHopGraph(2)
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
2887
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
2888
2889
2890
2891
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
2892
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
2893
2894
2895
2896
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

2897

nv-dlasalle's avatar
nv-dlasalle committed
2898
@parametrize_idtype
2899
def test_module_add_metapaths(idtype):
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
    g = dgl.heterograph(
        {
            ("person", "author", "paper"): ([0, 0, 1], [1, 2, 2]),
            ("paper", "accepted", "venue"): ([1], [0]),
            ("paper", "rejected", "venue"): ([2], [1]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.nodes["venue"].data["h"] = F.randn((g.num_nodes("venue"), 2))
    g.edges["author"].data["h"] = F.randn((g.num_edges("author"), 3))
2911
2912
2913

    # Case1: keep_orig_edges is True
    metapaths = {
2914
2915
2916
2917
2918
2919
2920
2921
        "accepted": [
            ("person", "author", "paper"),
            ("paper", "accepted", "venue"),
        ],
        "rejected": [
            ("person", "author", "paper"),
            ("paper", "rejected", "venue"),
        ],
2922
2923
2924
2925
2926
2927
2928
    }
    transform = dgl.AddMetaPaths(metapaths)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
2929
2930
2931
2932
2933
        ("person", "author", "paper"),
        ("paper", "accepted", "venue"),
        ("paper", "rejected", "venue"),
        ("person", "accepted", "venue"),
        ("person", "rejected", "venue"),
2934
2935
2936
2937
2938
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    for ety in g.canonical_etypes:
        assert new_g.num_edges(ety) == g.num_edges(ety)
2939
2940
2941
2942
2943
2944
    assert F.allclose(
        g.nodes["venue"].data["h"], new_g.nodes["venue"].data["h"]
    )
    assert F.allclose(
        g.edges["author"].data["h"], new_g.edges["author"].data["h"]
    )
2945

2946
    src, dst = new_g.edges(etype=("person", "accepted", "venue"))
2947
2948
2949
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

2950
    src, dst = new_g.edges(etype=("person", "rejected", "venue"))
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    # Case2: keep_orig_edges is False
    transform = dgl.AddMetaPaths(metapaths, keep_orig_edges=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert len(new_g.canonical_etypes) == 2
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
2963
2964
2965
    assert F.allclose(
        g.nodes["venue"].data["h"], new_g.nodes["venue"].data["h"]
    )
2966

2967
    src, dst = new_g.edges(etype=("person", "accepted", "venue"))
2968
2969
2970
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

2971
    src, dst = new_g.edges(etype=("person", "rejected", "venue"))
2972
2973
2974
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2975

nv-dlasalle's avatar
nv-dlasalle committed
2976
@parametrize_idtype
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
def test_module_compose(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    transform = dgl.Compose([dgl.AddReverse(), dgl.AddSelfLoop()])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_edges() == 7

    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (1, 0), (2, 1), (0, 0), (1, 1), (2, 2)}

2989

nv-dlasalle's avatar
nv-dlasalle committed
2990
@parametrize_idtype
2991
def test_module_gcnnorm(idtype):
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
    g = dgl.heterograph(
        {
            ("A", "r1", "A"): ([0, 1, 2], [0, 0, 1]),
            ("A", "r2", "B"): ([0, 0], [1, 1]),
            ("B", "r3", "B"): ([0, 1, 2], [0, 0, 1]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.edges["r3"].data["w"] = F.tensor([0.1, 0.2, 0.3])
3002
3003
    transform = dgl.GCNNorm()
    new_g = transform(g)
3004
3005
3006
3007
3008
3009
3010
3011
3012
    assert "w" not in new_g.edges[("A", "r2", "B")].data
    assert F.allclose(
        new_g.edges[("A", "r1", "A")].data["w"],
        F.tensor([1.0 / 2, 1.0 / math.sqrt(2), 0.0]),
    )
    assert F.allclose(
        new_g.edges[("B", "r3", "B")].data["w"],
        F.tensor([1.0 / 3, 2.0 / 3, 0.0]),
    )
3013

3014

3015
3016
3017
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3018
@parametrize_idtype
3019
def test_module_ppr(idtype):
3020
3021
3022
3023
    g = dgl.graph(
        ([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx()
    )
    g.ndata["h"] = F.randn((6, 2))
3024
3025
3026
3027
3028
3029
3030
    transform = dgl.PPR(avg_degree=2)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
    assert eset == {
        (0, 0),
        (0, 2),
        (0, 4),
        (1, 1),
        (1, 3),
        (1, 5),
        (2, 2),
        (2, 3),
        (2, 4),
        (3, 3),
        (3, 5),
        (4, 3),
        (4, 4),
        (4, 5),
        (5, 5),
    }
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert "w" in new_g.edata
3050
3051

    # Prior edge weights
3052
    g.edata["w"] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
3053
3054
3055
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
    assert eset == {
        (0, 0),
        (1, 1),
        (1, 3),
        (2, 2),
        (2, 3),
        (2, 4),
        (3, 3),
        (3, 5),
        (4, 3),
        (4, 4),
        (4, 5),
        (5, 5),
    }
3070

3071

3072
3073
3074
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3075
@parametrize_idtype
3076
3077
def test_module_heat_kernel(idtype):
    # Case1: directed graph
3078
3079
3080
3081
    g = dgl.graph(
        ([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx()
    )
    g.ndata["h"] = F.randn((6, 2))
3082
3083
3084
3085
3086
    transform = dgl.HeatKernel(avg_degree=1)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
3087
3088
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert "w" in new_g.edata
3089
3090
3091

    # Case2: weighted undirected graph
    g = dgl.graph(([0, 1, 2, 3], [1, 0, 3, 2]), idtype=idtype, device=F.ctx())
3092
    g.edata["w"] = F.tensor([0.1, 0.2, 0.3, 0.4])
3093
3094
3095
3096
3097
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

3098

3099
3100
3101
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3102
@parametrize_idtype
3103
3104
def test_module_gdc(idtype):
    transform = dgl.GDC([0.1, 0.2, 0.1], avg_degree=1)
3105
3106
3107
3108
    g = dgl.graph(
        ([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype, device=F.ctx()
    )
    g.ndata["h"] = F.randn((6, 2))
3109
3110
3111
3112
3113
3114
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
    assert eset == {
        (0, 0),
        (0, 2),
        (0, 4),
        (1, 1),
        (1, 3),
        (1, 5),
        (2, 2),
        (2, 3),
        (2, 4),
        (3, 3),
        (3, 5),
        (4, 3),
        (4, 4),
        (4, 5),
        (5, 5),
    }
    assert F.allclose(g.ndata["h"], new_g.ndata["h"])
    assert "w" in new_g.edata
3134
3135

    # Prior edge weights
3136
    g.edata["w"] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
3137
3138
3139
3140
3141
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3), (4, 3), (4, 4), (5, 5)}

3142

3143
3144
3145
3146
@unittest.skipIf(
    dgl.backend.backend_name == "tensorflow",
    reason="TF doesn't support a slicing operation",
)
nv-dlasalle's avatar
nv-dlasalle committed
3147
@parametrize_idtype
3148
3149
def test_module_node_shuffle(idtype):
    transform = dgl.NodeShuffle()
3150
3151
3152
3153
3154
    g = dgl.heterograph(
        {("A", "r", "B"): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx()
    )
    g.nodes["B"].data["h"] = F.randn((g.num_nodes("B"), 2))
    old_nfeat = g.nodes["B"].data["h"]
3155
    new_g = transform(g)
3156
    new_nfeat = g.nodes["B"].data["h"]
3157
    assert F.allclose(old_nfeat, new_nfeat)
3158

3159

3160
3161
3162
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3163
@parametrize_idtype
3164
3165
def test_module_drop_node(idtype):
    transform = dgl.DropNode()
3166
3167
3168
    g = dgl.heterograph(
        {("A", "r", "B"): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx()
    )
3169
    num_nodes_old = g.num_nodes()
3170
3171
3172
3173
3174
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
3175
3176
3177
    num_nodes_new = g.num_nodes()
    # Ensure that the original graph is not corrupted
    assert num_nodes_old == num_nodes_new
3178

3179

3180
3181
3182
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3183
@parametrize_idtype
3184
3185
def test_module_drop_edge(idtype):
    transform = dgl.DropEdge()
3186
3187
3188
3189
3190
3191
3192
3193
    g = dgl.heterograph(
        {
            ("A", "r1", "B"): ([0, 1], [1, 2]),
            ("C", "r2", "C"): ([3, 4, 5], [6, 7, 8]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
3194
    num_edges_old = g.num_edges()
3195
3196
3197
3198
3199
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
3200
3201
3202
    num_edges_new = g.num_edges()
    # Ensure that the original graph is not corrupted
    assert num_edges_old == num_edges_new
3203

3204

nv-dlasalle's avatar
nv-dlasalle committed
3205
@parametrize_idtype
3206
3207
def test_module_add_edge(idtype):
    transform = dgl.AddEdge()
3208
3209
3210
3211
3212
3213
3214
3215
    g = dgl.heterograph(
        {
            ("A", "r1", "B"): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5]),
            ("C", "r2", "C"): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5]),
        },
        idtype=idtype,
        device=F.ctx(),
    )
3216
    num_edges_old = g.num_edges()
3217
    new_g = transform(g)
3218
3219
    assert new_g.num_edges(("A", "r1", "B")) == 6
    assert new_g.num_edges(("C", "r2", "C")) == 6
3220
3221
3222
3223
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
3224
3225
3226
    num_edges_new = g.num_edges()
    # Ensure that the original graph is not corrupted
    assert num_edges_old == num_edges_new
3227

3228

nv-dlasalle's avatar
nv-dlasalle committed
3229
@parametrize_idtype
3230
def test_module_random_walk_pe(idtype):
3231
    transform = dgl.RandomWalkPE(2, "rwpe")
3232
3233
    g = dgl.graph(([0, 1, 1], [1, 1, 0]), idtype=idtype, device=F.ctx())
    new_g = transform(g)
3234
3235
    tgt = F.copy_to(F.tensor([[0.0, 0.5], [0.5, 0.75]]), g.device)
    assert F.allclose(new_g.ndata["rwpe"], tgt)
3236

3237

nv-dlasalle's avatar
nv-dlasalle committed
3238
@parametrize_idtype
3239
def test_module_laplacian_pe(idtype):
3240
3241
3242
    g = dgl.graph(
        ([2, 1, 0, 3, 1, 1], [3, 1, 1, 2, 1, 0]), idtype=idtype, device=F.ctx()
    )
3243
    tgt_eigval = F.copy_to(
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
        F.repeat(
            F.tensor([[1.1534e-17, 1.3333e00, 2.0, np.nan, np.nan]]),
            g.num_nodes(),
            dim=0,
        ),
        g.device,
    )
    tgt_pe = F.copy_to(
        F.tensor(
            [
                [0.5, 0.86602539, 0.0, 0.0, 0.0],
                [0.86602539, 0.5, 0.0, 0.0, 0.0],
                [0.0, 0.0, 0.70710677, 0.0, 0.0],
                [0.0, 0.0, 0.70710677, 0.0, 0.0],
            ]
        ),
        g.device,
    )
3262
3263

    # without padding (k<n)
3264
    transform = dgl.LaplacianPE(2, feat_name="lappe")
3265
3266
    new_g = transform(g)
    # tensorflow has no abs() api
3267
3268
    if dgl.backend.backend_name == "tensorflow":
        assert F.allclose(new_g.ndata["lappe"].__abs__(), tgt_pe[:, :2])
3269
3270
    # pytorch & mxnet
    else:
3271
        assert F.allclose(new_g.ndata["lappe"].abs(), tgt_pe[:, :2])
3272
3273

    # with padding (k>=n)
3274
    transform = dgl.LaplacianPE(5, feat_name="lappe", padding=True)
3275
3276
    new_g = transform(g)
    # tensorflow has no abs() api
3277
3278
    if dgl.backend.backend_name == "tensorflow":
        assert F.allclose(new_g.ndata["lappe"].__abs__(), tgt_pe)
3279
3280
    # pytorch & mxnet
    else:
3281
        assert F.allclose(new_g.ndata["lappe"].abs(), tgt_pe)
3282
3283

    # with eigenvalues
3284
3285
3286
    transform = dgl.LaplacianPE(
        5, feat_name="lappe", eigval_name="eigval", padding=True
    )
3287
3288
    new_g = transform(g)
    # tensorflow has no abs() api
3289
3290
3291
    if dgl.backend.backend_name == "tensorflow":
        assert F.allclose(new_g.ndata["eigval"][:, :3], tgt_eigval[:, :3])
        assert F.allclose(new_g.ndata["lappe"].__abs__(), tgt_pe)
3292
3293
    # pytorch & mxnet
    else:
3294
3295
        assert F.allclose(new_g.ndata["eigval"][:, :3], tgt_eigval[:, :3])
        assert F.allclose(new_g.ndata["lappe"].abs(), tgt_pe)
3296

3297

3298
3299
3300
3301
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
@pytest.mark.parametrize("g", get_cases(["has_scalar_e_feature"]))
3302
3303
def test_module_sign(g):
    import torch
3304

Mufei Li's avatar
Mufei Li committed
3305
    atol = 1e-06
3306
3307
3308

    ctx = F.ctx()
    g = g.to(ctx)
3309
    adj = g.adj(transpose=True, scipy_fmt="coo").todense()
3310
3311
    adj = torch.tensor(adj).float().to(ctx)

3312
    weight_adj = g.adj(transpose=True, scipy_fmt="coo").astype(float).todense()
3313
3314
3315
    weight_adj = torch.tensor(weight_adj).float().to(ctx)
    src, dst = g.edges()
    src, dst = src.long(), dst.long()
3316
    weight_adj[dst, src] = g.edata["scalar_w"]
3317
3318

    # raw
3319
    transform = dgl.SIGNDiffusion(k=1, in_feat_name="h", diffuse_op="raw")
3320
    g = transform(g)
3321
3322
    target = torch.matmul(adj, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3323

3324
3325
3326
    transform = dgl.SIGNDiffusion(
        k=1, in_feat_name="h", eweight_name="scalar_w", diffuse_op="raw"
    )
3327
    g = transform(g)
3328
3329
    target = torch.matmul(weight_adj, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3330
3331
3332

    # rw
    adj_rw = torch.matmul(torch.diag(1 / adj.sum(dim=1)), adj)
3333
    transform = dgl.SIGNDiffusion(k=1, in_feat_name="h", diffuse_op="rw")
3334
    g = transform(g)
3335
3336
    target = torch.matmul(adj_rw, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3337

3338
3339
3340
3341
3342
3343
    weight_adj_rw = torch.matmul(
        torch.diag(1 / weight_adj.sum(dim=1)), weight_adj
    )
    transform = dgl.SIGNDiffusion(
        k=1, in_feat_name="h", eweight_name="scalar_w", diffuse_op="rw"
    )
3344
    g = transform(g)
3345
3346
    target = torch.matmul(weight_adj_rw, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3347
3348

    # gcn
3349
    raw_eweight = g.edata["scalar_w"]
3350
    gcn_norm = dgl.GCNNorm()
3351
    g = gcn_norm(g)
3352
    adj_gcn = adj.clone()
3353
3354
    adj_gcn[dst, src] = g.edata.pop("w")
    transform = dgl.SIGNDiffusion(k=1, in_feat_name="h", diffuse_op="gcn")
3355
    g = transform(g)
3356
3357
    target = torch.matmul(adj_gcn, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3358

3359
    gcn_norm = dgl.GCNNorm("scalar_w")
3360
    g = gcn_norm(g)
3361
    weight_adj_gcn = weight_adj.clone()
3362
3363
3364
3365
3366
    weight_adj_gcn[dst, src] = g.edata["scalar_w"]
    g.edata["scalar_w"] = raw_eweight
    transform = dgl.SIGNDiffusion(
        k=1, in_feat_name="h", eweight_name="scalar_w", diffuse_op="gcn"
    )
3367
    g = transform(g)
3368
3369
    target = torch.matmul(weight_adj_gcn, g.ndata["h"])
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3370
3371
3372

    # ppr
    alpha = 0.2
3373
3374
3375
    transform = dgl.SIGNDiffusion(
        k=1, in_feat_name="h", diffuse_op="ppr", alpha=alpha
    )
3376
    g = transform(g)
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
    target = (1 - alpha) * torch.matmul(
        adj_gcn, g.ndata["h"]
    ) + alpha * g.ndata["h"]
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)

    transform = dgl.SIGNDiffusion(
        k=1,
        in_feat_name="h",
        eweight_name="scalar_w",
        diffuse_op="ppr",
        alpha=alpha,
    )
3389
    g = transform(g)
3390
3391
3392
3393
    target = (1 - alpha) * torch.matmul(
        weight_adj_gcn, g.ndata["h"]
    ) + alpha * g.ndata["h"]
    assert torch.allclose(g.ndata["out_feat_1"], target, atol=atol)
3394

3395

3396
3397
3398
@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3399
@parametrize_idtype
3400
3401
def test_module_row_feat_normalizer(idtype):
    # Case1: Normalize features of a homogeneous graph.
3402
3403
3404
    transform = dgl.RowFeatNormalizer(
        subtract_min=True, node_feat_names=["h"], edge_feat_names=["w"]
    )
3405
    g = dgl.rand_graph(5, 5, idtype=idtype, device=F.ctx())
3406
3407
    g.ndata["h"] = F.randn((g.num_nodes(), 128))
    g.edata["w"] = F.randn((g.num_edges(), 128))
3408
    g = transform(g)
3409
3410
3411
3412
    assert g.ndata["h"].shape == (g.num_nodes(), 128)
    assert g.edata["w"].shape == (g.num_edges(), 128)
    assert F.allclose(g.ndata["h"].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))
    assert F.allclose(g.edata["w"].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))
3413
3414

    # Case2: Normalize features of a heterogeneous graph.
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
    transform = dgl.RowFeatNormalizer(
        subtract_min=True, node_feat_names=["h", "h2"], edge_feat_names=["w"]
    )
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (F.tensor([1, 2]), F.tensor([3, 4])),
            ("player", "plays", "game"): (F.tensor([2, 2]), F.tensor([1, 1])),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.ndata["h"] = {"game": F.randn((2, 128)), "player": F.randn((3, 128))}
    g.ndata["h2"] = {"user": F.randn((5, 128))}
    g.edata["w"] = {
        ("user", "follows", "user"): F.randn((2, 128)),
        ("player", "plays", "game"): F.randn((2, 128)),
    }
3432
    g = transform(g)
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
    assert g.ndata["h"]["game"].shape == (2, 128)
    assert g.ndata["h"]["player"].shape == (3, 128)
    assert g.ndata["h2"]["user"].shape == (5, 128)
    assert g.edata["w"][("user", "follows", "user")].shape == (2, 128)
    assert g.edata["w"][("player", "plays", "game")].shape == (2, 128)
    assert F.allclose(g.ndata["h"]["game"].sum(1), F.tensor([1.0, 1.0]))
    assert F.allclose(g.ndata["h"]["player"].sum(1), F.tensor([1.0, 1.0, 1.0]))
    assert F.allclose(
        g.ndata["h2"]["user"].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0])
    )
    assert F.allclose(
        g.edata["w"][("user", "follows", "user")].sum(1), F.tensor([1.0, 1.0])
    )
    assert F.allclose(
        g.edata["w"][("player", "plays", "game")].sum(1), F.tensor([1.0, 1.0])
    )


@unittest.skipIf(
    dgl.backend.backend_name != "pytorch", reason="Only support PyTorch for now"
)
nv-dlasalle's avatar
nv-dlasalle committed
3454
@parametrize_idtype
3455
3456
def test_module_feat_mask(idtype):
    # Case1: Mask node and edge feature tensors of a homogeneous graph.
3457
    transform = dgl.FeatMask(node_feat_names=["h"], edge_feat_names=["w"])
3458
    g = dgl.rand_graph(5, 20, idtype=idtype, device=F.ctx())
3459
3460
    g.ndata["h"] = F.ones((g.num_nodes(), 10))
    g.edata["w"] = F.ones((g.num_edges(), 20))
3461
3462
3463
    g = transform(g)
    assert g.device == g.device
    assert g.idtype == g.idtype
3464
3465
    assert g.ndata["h"].shape == (g.num_nodes(), 10)
    assert g.edata["w"].shape == (g.num_edges(), 20)
3466
3467

    # Case2: Mask node and edge feature tensors of a heterogeneous graph.
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
    g = dgl.heterograph(
        {
            ("user", "follows", "user"): (F.tensor([1, 2]), F.tensor([3, 4])),
            ("player", "plays", "game"): (F.tensor([2, 2]), F.tensor([1, 1])),
        },
        idtype=idtype,
        device=F.ctx(),
    )
    g.ndata["h"] = {"game": F.randn((2, 5)), "player": F.randn((3, 5))}
    g.edata["w"] = {
        ("user", "follows", "user"): F.randn((2, 5)),
        ("player", "plays", "game"): F.randn((2, 5)),
    }
3481
3482
3483
    g = transform(g)
    assert g.device == g.device
    assert g.idtype == g.idtype
3484
3485
3486
3487
    assert g.ndata["h"]["game"].shape == (2, 5)
    assert g.ndata["h"]["player"].shape == (3, 5)
    assert g.edata["w"][("user", "follows", "user")].shape == (2, 5)
    assert g.edata["w"][("player", "plays", "game")].shape == (2, 5)
3488

3489

3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
@parametrize_idtype
def test_shortest_dist(idtype):
    g = dgl.graph(([0, 1, 1, 2], [2, 0, 3, 3]), idtype=idtype, device=F.ctx())

    # case 1: directed single source
    dist = dgl.shortest_dist(g, root=0)
    tgt = F.copy_to(F.tensor([0, -1, 1, 2], dtype=F.int64), g.device)
    assert F.array_equal(dist, tgt)

    # case 2: undirected all pairs
    dist, paths = dgl.shortest_dist(g, root=None, return_paths=True)
    tgt_dist = F.copy_to(
3502
3503
3504
3505
3506
        F.tensor(
            [[0, -1, 1, 2], [1, 0, 2, 1], [-1, -1, 0, 1], [-1, -1, -1, 0]],
            dtype=F.int64,
        ),
        g.device,
3507
3508
    )
    tgt_paths = F.copy_to(
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
        F.tensor(
            [
                [[-1, -1], [-1, -1], [0, -1], [0, 3]],
                [[1, -1], [-1, -1], [1, 0], [2, -1]],
                [[-1, -1], [-1, -1], [-1, -1], [3, -1]],
                [[-1, -1], [-1, -1], [-1, -1], [-1, -1]],
            ],
            dtype=F.int64,
        ),
        g.device,
3519
3520
3521
3522
    )
    assert F.array_equal(dist, tgt_dist)
    assert F.array_equal(paths, tgt_paths)

3523

3524
3525
3526
3527
@parametrize_idtype
def test_module_to_levi(idtype):
    transform = dgl.ToLevi()
    g = dgl.graph(([0, 1, 2, 3], [1, 2, 3, 0]), idtype=idtype, device=F.ctx())
3528
3529
    g.ndata["h"] = F.randn((g.num_nodes(), 2))
    g.edata["w"] = F.randn((g.num_edges(), 2))
3530
3531
3532
    lg = transform(g)
    assert lg.device == g.device
    assert lg.idtype == g.idtype
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
    assert lg.ntypes == ["edge", "node"]
    assert lg.canonical_etypes == [
        ("edge", "e2n", "node"),
        ("node", "n2e", "edge"),
    ]
    assert lg.num_nodes("node") == g.num_nodes()
    assert lg.num_nodes("edge") == g.num_edges()
    assert lg.num_edges("n2e") == g.num_edges()
    assert lg.num_edges("e2n") == g.num_edges()

    src, dst = lg.edges(etype="n2e")
3544
3545
3546
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

3547
    src, dst = lg.edges(etype="e2n")
3548
3549
3550
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (2, 3), (3, 0)}

3551
3552
    assert F.allclose(lg.nodes["node"].data["h"], g.ndata["h"])
    assert F.allclose(lg.nodes["edge"].data["w"], g.edata["w"])
3553

3554
3555
3556
3557
3558
3559

@parametrize_idtype
def test_module_svd_pe(idtype):
    g = dgl.graph(
        (
            [0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4],
3560
            [2, 3, 0, 2, 0, 2, 3, 4, 3, 4, 0, 1],
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
        ),
        idtype=idtype,
        device=F.ctx(),
    )
    # without padding
    tgt_pe = F.copy_to(
        F.tensor(
            [
                [0.6669, 0.3068, 0.7979, 0.8477],
                [0.6311, 0.6101, 0.1248, 0.5137],
                [1.1993, 0.0665, 0.9183, 0.1455],
                [0.5682, 0.6766, 0.8952, 0.6449],
                [0.3393, 0.8363, 0.6500, 0.4564],
            ]
        ),
        g.device,
    )
    transform_1 = dgl.SVDPE(k=2, feat_name="svd_pe")
    g1 = transform_1(g)
    if dgl.backend.backend_name == "tensorflow":
        assert F.allclose(g1.ndata["svd_pe"].__abs__(), tgt_pe)
    else:
        assert F.allclose(g1.ndata["svd_pe"].abs(), tgt_pe)

    # with padding
    transform_2 = dgl.SVDPE(k=6, feat_name="svd_pe", padding=True)
    g2 = transform_2(g)
    assert F.shape(g2.ndata["svd_pe"]) == (5, 12)


if __name__ == "__main__":
3592
    test_partition_with_halo()
3593
    test_module_heat_kernel(F.int32)