test_transform.py 122 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
##
#   Copyright 2019-2021 Contributors
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

17
from scipy import sparse as spsp
18
19
import networkx as nx
import numpy as np
20
import os
21
22
import dgl
import dgl.function as fn
23
import dgl.partition
24
import backend as F
25
import unittest
26
import math
27
28
import pytest
from test_utils.graph_cases import get_cases
nv-dlasalle's avatar
nv-dlasalle committed
29
from test_utils import parametrize_idtype
30
31
32

D = 5

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def create_test_heterograph3(idtype):
    g = dgl.heterograph({
        ('user', 'plays', 'game'): (F.tensor([0, 1, 1, 2], dtype=idtype),
                                    F.tensor([0, 0, 1, 1], dtype=idtype)),
        ('developer', 'develops', 'game'): (F.tensor([0, 1], dtype=idtype),
                                            F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())

    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    g.nodes['developer'].data['h'] = F.copy_to(F.tensor([3, 3], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 1, 1, 1], dtype=idtype), ctx=F.ctx())
    return g

def create_test_heterograph4(idtype):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([0, 1, 1, 2, 2, 2], dtype=idtype),
                                      F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype)),
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
                                    F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4, 5, 6], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    return g

def create_test_heterograph5(idtype):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2], dtype=idtype),
                                      F.tensor([0, 1], dtype=idtype)),
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
                                    F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    return g

73

74
# line graph related
75

76
def test_line_graph1():
77
    N = 5
78
    G = dgl.DGLGraph(nx.star_graph(N)).to(F.ctx())
79
    G.edata['h'] = F.randn((2 * N, D))
80
81
    L = G.line_graph(shared=True)
    assert L.number_of_nodes() == 2 * N
82
    assert F.allclose(L.ndata['h'], G.edata['h'])
83
    assert G.device == F.ctx()
84

85

nv-dlasalle's avatar
nv-dlasalle committed
86
@parametrize_idtype
87
def test_line_graph2(idtype):
88
    g = dgl.heterograph({
89
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2], [2, 0, 2, 0, 1])
90
    }, idtype=idtype)
91
    lg = dgl.line_graph(g)
92
93
94
95
96
97
98
99
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

100
    lg = dgl.line_graph(g, backtracking=False)
101
102
103
104
105
106
107
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 4
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 1, 2, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([4, 0, 3, 1]))
108
    g = dgl.heterograph({
109
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2], [2, 0, 2, 0, 1])
110
    }, idtype=idtype).formats('csr')
111
    lg = dgl.line_graph(g)
112
113
114
115
116
117
118
119
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col = lg.edges()
    assert np.array_equal(F.asnumpy(row),
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(F.asnumpy(col),
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))

120
    g = dgl.heterograph({
121
        ('user', 'follows', 'user'): ([0, 1, 1, 2, 2], [2, 0, 2, 0, 1])
122
    }, idtype=idtype).formats('csc')
123
    lg = dgl.line_graph(g)
124
125
126
127
128
129
130
131
132
133
134
    assert lg.number_of_nodes() == 5
    assert lg.number_of_edges() == 8
    row, col, eid = lg.edges('all')
    row = F.asnumpy(row)
    col = F.asnumpy(col)
    eid = F.asnumpy(eid).astype(int)
    order = np.argsort(eid)
    assert np.array_equal(row[order],
                          np.array([0, 0, 1, 2, 2, 3, 4, 4]))
    assert np.array_equal(col[order],
                          np.array([3, 4, 0, 3, 4, 0, 1, 2]))
135

136

137
138
139
140
141
142
def test_no_backtracking():
    N = 5
    G = dgl.DGLGraph(nx.star_graph(N))
    L = G.line_graph(backtracking=False)
    assert L.number_of_nodes() == 2 * N
    for i in range(1, N):
143
144
145
146
        e1 = G.edge_ids(0, i)
        e2 = G.edge_ids(i, 0)
        assert not L.has_edges_between(e1, e2)
        assert not L.has_edges_between(e2, e1)
147

148

149
# reverse graph related
nv-dlasalle's avatar
nv-dlasalle committed
150
@parametrize_idtype
151
def test_reverse(idtype):
152
    g = dgl.DGLGraph()
153
    g = g.astype(idtype).to(F.ctx())
154
155
156
    g.add_nodes(5)
    # The graph need not to be completely connected.
    g.add_edges([0, 1, 2], [1, 2, 1])
157
158
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [3.], [4.]])
    g.edata['h'] = F.tensor([[5.], [6.], [7.]])
159
160
161
162
163
164
    rg = g.reverse()

    assert g.is_multigraph == rg.is_multigraph

    assert g.number_of_nodes() == rg.number_of_nodes()
    assert g.number_of_edges() == rg.number_of_edges()
165
166
    assert F.allclose(F.astype(rg.has_edges_between(
        [1, 2, 1], [0, 1, 2]), F.float32), F.ones((3,)))
167
168
169
    assert g.edge_ids(0, 1) == rg.edge_ids(1, 0)
    assert g.edge_ids(1, 2) == rg.edge_ids(2, 1)
    assert g.edge_ids(2, 1) == rg.edge_ids(1, 2)
170

171
    # test dgl.reverse
172
173
174
175
    # test homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2]), F.tensor([1, 2, 0])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
176
    g_r = dgl.reverse(g)
177
178
179
180
181
182
183
184
185
186
187
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    u_g, v_g, eids_g = g.all_edges(form='all')
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all')
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert len(g_r.edata) == 0

    # without share ndata
188
    g_r = dgl.reverse(g, copy_ndata=False)
189
190
191
192
193
194
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert len(g_r.ndata) == 0
    assert len(g_r.edata) == 0

    # with share ndata and edata
195
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    assert g.number_of_nodes() == g_r.number_of_nodes()
    assert g.number_of_edges() == g_r.number_of_edges()
    assert F.array_equal(g.ndata['h'], g_r.ndata['h'])
    assert F.array_equal(g.edata['h'], g_r.edata['h'])

    # add new node feature to g_r
    g_r.ndata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.ndata) is False
    assert ('hh' in g_r.ndata) is True

    # add new edge feature to g_r
    g_r.edata['hh'] = F.tensor([0, 1, 2])
    assert ('hh' in g.edata) is False
    assert ('hh' in g_r.edata) is True

    # test heterogeneous graph
    g = dgl.heterograph({
213
214
215
216
        ('user', 'follows', 'user'): (
            [0, 1, 2, 4, 3, 1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): (
            [0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
217
218
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1])},
        idtype=idtype, device=F.ctx())
219
220
221
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([1, 1, 1, 1, 1])
    g.nodes['game'].data['h'] = F.tensor([0, 1])
222
    g.edges['follows'].data['h'] = F.tensor([0, 1, 2, 4, 3, 1, 3])
223
    g.edges['follows'].data['hh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
224
    g_r = dgl.reverse(g)
225
226
227
228
229
230
231
232
233

    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert F.array_equal(g.nodes['user'].data['h'], g_r.nodes['user'].data['h'])
234
235
    assert F.array_equal(g.nodes['user'].data['hh'],
                         g_r.nodes['user'].data['hh'])
236
237
    assert F.array_equal(g.nodes['game'].data['h'], g_r.nodes['game'].data['h'])
    assert len(g_r.edges['follows'].data) == 0
238
239
240
241
    u_g, v_g, eids_g = g.all_edges(form='all',
                                   etype=('user', 'follows', 'user'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all',
                                        etype=('user', 'follows', 'user'))
242
243
244
245
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
    u_g, v_g, eids_g = g.all_edges(form='all', etype=('user', 'plays', 'game'))
246
247
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all',
                                        etype=('game', 'plays', 'user'))
248
249
250
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)
251
252
253
254
    u_g, v_g, eids_g = g.all_edges(form='all',
                                   etype=('developer', 'develops', 'game'))
    u_rg, v_rg, eids_rg = g_r.all_edges(form='all',
                                        etype=('game', 'develops', 'developer'))
255
256
257
258
259
    assert F.array_equal(u_g, v_rg)
    assert F.array_equal(v_g, u_rg)
    assert F.array_equal(eids_g, eids_rg)

    # withour share ndata
260
    g_r = dgl.reverse(g, copy_ndata=False)
261
262
263
264
265
266
267
268
269
270
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == g_r.number_of_nodes(ntype)
    assert len(g_r.nodes['user'].data) == 0
    assert len(g_r.nodes['game'].data) == 0

271
    g_r = dgl.reverse(g, copy_ndata=True, copy_edata=True)
272
273
274
275
276
277
    print(g_r)
    for etype_g, etype_gr in zip(g.canonical_etypes, g_r.canonical_etypes):
        assert etype_g[0] == etype_gr[2]
        assert etype_g[1] == etype_gr[1]
        assert etype_g[2] == etype_gr[0]
        assert g.number_of_edges(etype_g) == g_r.number_of_edges(etype_gr)
278
279
280
281
    assert F.array_equal(g.edges['follows'].data['h'],
                         g_r.edges['follows'].data['h'])
    assert F.array_equal(g.edges['follows'].data['hh'],
                         g_r.edges['follows'].data['hh'])
282
283
284
285
286
287
288
289
290
291
292

    # add new node feature to g_r
    g_r.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert ('hhh' in g.nodes['user'].data) is False
    assert ('hhh' in g_r.nodes['user'].data) is True

    # add new edge feature to g_r
    g_r.edges['follows'].data['hhh'] = F.tensor([1, 2, 3, 2, 0, 0, 1])
    assert ('hhh' in g.edges['follows'].data) is False
    assert ('hhh' in g_r.edges['follows'].data) is True

293

nv-dlasalle's avatar
nv-dlasalle committed
294
@parametrize_idtype
295
def test_reverse_shared_frames(idtype):
296
    g = dgl.DGLGraph()
297
    g = g.astype(idtype).to(F.ctx())
298
299
    g.add_nodes(3)
    g.add_edges([0, 1, 2], [1, 2, 1])
300
301
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.]])
302
303

    rg = g.reverse(share_ndata=True, share_edata=True)
304
305
306
    assert F.allclose(g.ndata['h'], rg.ndata['h'])
    assert F.allclose(g.edata['h'], rg.edata['h'])
    assert F.allclose(g.edges[[0, 2], [1, 1]].data['h'],
307
308
                      rg.edges[[1, 1], [0, 2]].data['h'])

309

310
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
311
def test_to_bidirected():
312
313
    # homogeneous graph
    elist = [(0, 0), (0, 1), (1, 0),
314
             (1, 1), (2, 1), (2, 2)]
315
    num_edges = 7
316
    g = dgl.graph(tuple(zip(*elist)))
317
318
319
320
321
322
323
324
325
326
    elist.append((1, 2))
    elist = set(elist)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges() == num_edges
    src, dst = big.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)

    # heterogeneous graph
    elist1 = [(0, 0), (0, 1), (1, 0),
327
              (1, 1), (2, 1), (2, 2)]
328
329
    elist2 = [(0, 0), (0, 1)]
    g = dgl.heterograph({
330
331
        ('user', 'wins', 'user'): tuple(zip(*elist1)),
        ('user', 'follows', 'user'): tuple(zip(*elist2))
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    })
    g.nodes['user'].data['h'] = F.ones((3, 1))
    elist1.append((1, 2))
    elist1 = set(elist1)
    elist2.append((1, 0))
    elist2 = set(elist2)
    big = dgl.to_bidirected(g)
    assert big.number_of_edges('wins') == 7
    assert big.number_of_edges('follows') == 3
    src, dst = big.edges(etype='wins')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist1)
    src, dst = big.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist2)

    big = dgl.to_bidirected(g, copy_ndata=True)
    assert F.array_equal(g.nodes['user'].data['h'], big.nodes['user'].data['h'])

351

352
def test_add_reverse_edges():
353
354
355
356
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
357
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
358
359
360
361
362
    u, v = g.edges()
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
363
364
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0),
                         bg.edata['h'])
365
366
367
368
369
370
    bg.ndata['hh'] = F.tensor([[0.], [1.], [2.], [1.]])
    assert ('hh' in g.ndata) is False
    bg.edata['hh'] = F.tensor([[0.], [1.], [2.], [1.], [0.], [1.], [2.], [1.]])
    assert ('hh' in g.edata) is False

    # donot share ndata and edata
371
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False)
372
373
374
375
376
377
378
    ub, vb = bg.edges()
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    assert ('h' in bg.ndata) is False
    assert ('h' in bg.edata) is False

    # zero edge graph
379
    g = dgl.graph(([], []))
380
381
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True,
                               exclude_self=False)
382
383
384

    # heterogeneous graph
    g = dgl.heterograph({
385
386
        ('user', 'wins', 'user'): (
            F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
387
388
389
390
391
392
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
        ('user', 'follows', 'user'): (F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))
    })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((3, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
393
394
395
396
397
398
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True,
                               ignore_bipartite=True)
    assert F.array_equal(g.nodes['game'].data['hv'],
                         bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'],
                         bg.nodes['user'].data['hv'])
399
400
401
402
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
403
404
405
    assert F.array_equal(
        F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
        bg.edges['wins'].data['h'])
406
407
408
409
410
411
412
413
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)
414
415
    assert set(bg.edges['plays'].data.keys()) == {dgl.EID}
    assert set(bg.edges['follows'].data.keys()) == {dgl.EID}
416
417

    # donot share ndata and edata
418
419
    bg = dgl.add_reverse_edges(g, copy_ndata=False, copy_edata=False,
                               ignore_bipartite=True)
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    assert len(bg.edges['wins'].data) == 0
    assert len(bg.edges['plays'].data) == 0
    assert len(bg.edges['follows'].data) == 0
    assert len(bg.nodes['game'].data) == 0
    assert len(bg.nodes['user'].data) == 0
    u, v = g.all_edges(order='eid', etype=('user', 'wins', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'wins', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'follows', 'user'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'follows', 'user'))
    assert F.array_equal(F.cat([u, v], dim=0), ub)
    assert F.array_equal(F.cat([v, u], dim=0), vb)
    u, v = g.all_edges(order='eid', etype=('user', 'plays', 'game'))
    ub, vb = bg.all_edges(order='eid', etype=('user', 'plays', 'game'))
    assert F.array_equal(u, ub)
    assert F.array_equal(v, vb)

438
439
440
441
442
443
444
445
    # test the case when some nodes have zero degree
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 3, 1]), F.tensor([1, 2, 0, 2])), num_nodes=6)
    g.ndata['h'] = F.tensor([[0.], [1.], [2.], [1.], [1.], [1.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True)
    assert g.number_of_nodes() == bg.number_of_nodes()
    assert F.array_equal(g.ndata['h'], bg.ndata['h'])
446
447
    assert F.array_equal(F.cat([g.edata['h'], g.edata['h']], dim=0),
                         bg.edata['h'])
448
449
450

    # heterogeneous graph
    g = dgl.heterograph({
451
452
        ('user', 'wins', 'user'): (
            F.tensor([0, 2, 0, 2, 2]), F.tensor([1, 1, 2, 1, 0])),
453
        ('user', 'plays', 'game'): (F.tensor([1, 2, 1]), F.tensor([2, 1, 1])),
454
455
        ('user', 'follows', 'user'): (
            F.tensor([1, 2, 1]), F.tensor([0, 0, 0]))},
456
457
458
459
460
461
462
        num_nodes_dict={
            'user': 5,
            'game': 3
        })
    g.nodes['game'].data['hv'] = F.ones((3, 1))
    g.nodes['user'].data['hv'] = F.ones((5, 1))
    g.edges['wins'].data['h'] = F.tensor([0, 1, 2, 3, 4])
463
464
    bg = dgl.add_reverse_edges(g, copy_ndata=True, copy_edata=True,
                               ignore_bipartite=True)
465
466
    assert g.number_of_nodes('user') == bg.number_of_nodes('user')
    assert g.number_of_nodes('game') == bg.number_of_nodes('game')
467
468
469
470
471
472
473
    assert F.array_equal(g.nodes['game'].data['hv'],
                         bg.nodes['game'].data['hv'])
    assert F.array_equal(g.nodes['user'].data['hv'],
                         bg.nodes['user'].data['hv'])
    assert F.array_equal(
        F.cat([g.edges['wins'].data['h'], g.edges['wins'].data['h']], dim=0),
        bg.edges['wins'].data['h'])
474

475
476
477
478
479
480
481
482
483
484
    # test exclude_self
    g = dgl.heterograph({
        ('A', 'r1', 'A'): (F.tensor([0, 0, 1, 1]), F.tensor([0, 1, 1, 2])),
        ('A', 'r2', 'A'): (F.tensor([0, 1]), F.tensor([1, 2]))
    })
    g.edges['r1'].data['h'] = F.tensor([0, 1, 2, 3])
    rg = dgl.add_reverse_edges(g, copy_edata=True, exclude_self=True)
    assert rg.num_edges('r1') == 6
    assert rg.num_edges('r2') == 4
    assert F.array_equal(rg.edges['r1'].data['h'], F.tensor([0, 1, 2, 3, 1, 3]))
485

486

487
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
488
489
490
491
492
493
494
495
496
497
def test_simple_graph():
    elist = [(0, 1), (0, 2), (1, 2), (0, 1)]
    g = dgl.DGLGraph(elist, readonly=True)
    assert g.is_multigraph
    sg = dgl.to_simple_graph(g)
    assert not sg.is_multigraph
    assert sg.number_of_edges() == 3
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == set(elist)
498

499

500
501
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
def _test_bidirected_graph():
502
    def _test(in_readonly, out_readonly):
503
        elist = [(0, 0), (0, 1), (1, 0),
504
                 (1, 1), (2, 1), (2, 2)]
505
        num_edges = 7
506
507
508
        g = dgl.DGLGraph(elist, readonly=in_readonly)
        elist.append((1, 2))
        elist = set(elist)
509
        big = dgl.to_bidirected_stale(g, out_readonly)
510
        assert big.number_of_edges() == num_edges
511
512
513
514
515
516
517
518
519
        src, dst = big.edges()
        eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
        assert eset == set(elist)

    _test(True, True)
    _test(True, False)
    _test(False, True)
    _test(False, False)

520

521
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
522
523
524
525
def test_khop_graph():
    N = 20
    feat = F.randn((N, 5))

Mufei Li's avatar
Mufei Li committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
    def _test(g):
        for k in range(4):
            g_k = dgl.khop_graph(g, k)
            # use original graph to do message passing for k times.
            g.ndata['h'] = feat
            for _ in range(k):
                g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_0 = g.ndata.pop('h')
            # use k-hop graph to do message passing for one time.
            g_k.ndata['h'] = feat
            g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            h_1 = g_k.ndata.pop('h')
            assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

    # Test for random undirected graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    _test(g)
    # Test for random directed graphs
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
    _test(g)
546

547

548
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
549
550
551
552
553
def test_khop_adj():
    N = 20
    feat = F.randn((N, 5))
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    for k in range(3):
554
        adj = F.tensor(F.swapaxes(dgl.khop_adj(g, k), 0, 1))
555
556
557
558
559
560
561
562
563
        # use original graph to do message passing for k times.
        g.ndata['h'] = feat
        for _ in range(k):
            g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
        h_0 = g.ndata.pop('h')
        # use k-hop adj to do message passing for one time.
        h_1 = F.matmul(adj, feat)
        assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)

564

565
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
566
567
568
569
570
571
572
def test_laplacian_lambda_max():
    N = 20
    eps = 1e-6
    # test DGLGraph
    g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
    l_max = dgl.laplacian_lambda_max(g)
    assert (l_max[0] < 2 + eps)
Zihao Ye's avatar
Zihao Ye committed
573
    # test batched DGLGraph
574
    '''
575
576
577
578
579
580
581
582
583
    N_arr = [20, 30, 10, 12]
    bg = dgl.batch([
        dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
        for N in N_arr
    ])
    l_max_arr = dgl.laplacian_lambda_max(bg)
    assert len(l_max_arr) == len(N_arr)
    for l_max in l_max_arr:
        assert l_max < 2 + eps
584
    '''
585

586

587
def create_large_graph(num_nodes, idtype=F.int64):
588
589
590
    row = np.random.choice(num_nodes, num_nodes * 10)
    col = np.random.choice(num_nodes, num_nodes * 10)
    spm = spsp.coo_matrix((np.ones(len(row)), (row, col)))
591
    spm.sum_duplicates()
592

593
    return dgl.from_scipy(spm, idtype=idtype)
594

595

596
# Disabled since everything will be on heterogeneous graphs
597
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
598
def test_partition_with_halo():
599
    g = create_large_graph(1000)
600
    node_part = np.random.choice(4, g.number_of_nodes())
601
602
    subgs, _, _ = dgl.transforms.partition_graph_with_halo(g, node_part, 2,
                                                           reshuffle=True)
603
604
605
    for part_id, subg in subgs.items():
        node_ids = np.nonzero(node_part == part_id)[0]
        lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
606
607
        orig_nids = F.asnumpy(subg.ndata['orig_id'])[lnode_ids]
        assert np.all(np.sort(orig_nids) == node_ids)
608
609
610
611
612
        assert np.all(F.asnumpy(subg.in_degrees(lnode_ids)) == F.asnumpy(
            g.in_degrees(orig_nids)))
        assert np.all(F.asnumpy(subg.out_degrees(lnode_ids)) == F.asnumpy(
            g.out_degrees(orig_nids)))

613

614
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
615
616
@unittest.skipIf(F._default_context_str == 'gpu',
                 reason="METIS doesn't support GPU")
nv-dlasalle's avatar
nv-dlasalle committed
617
@parametrize_idtype
618
def test_metis_partition(idtype):
Da Zheng's avatar
Da Zheng committed
619
    # TODO(zhengda) Metis fails to partition a small graph.
620
621
622
623
624
625
626
627
628
629
630
631
632
    g = create_large_graph(1000, idtype=idtype)
    if idtype == F.int64:
        check_metis_partition(g, 0)
        check_metis_partition(g, 1)
        check_metis_partition(g, 2)
        check_metis_partition_with_constraint(g)
    else:
        assert_fail = False
        try:
            check_metis_partition(g, 1)
        except:
            assert_fail = True
        assert assert_fail
633

634

635
636
def check_metis_partition_with_constraint(g):
    ntypes = np.zeros((g.number_of_nodes(),), dtype=np.int32)
637
638
639
640
    ntypes[0:int(g.number_of_nodes() / 4)] = 1
    ntypes[int(g.number_of_nodes() * 3 / 4):] = 2
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=1,
                                           balance_ntypes=ntypes)
641
642
643
644
645
646
647
648
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
649
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=1,
650
651
                                           balance_ntypes=ntypes,
                                           balance_edges=True)
652
653
654
655
656
657
658
659
    if subgs is not None:
        for i in subgs:
            subg = subgs[i]
            parent_nids = F.asnumpy(subg.ndata[dgl.NID])
            sub_ntypes = ntypes[parent_nids]
            print('type0:', np.sum(sub_ntypes == 0))
            print('type1:', np.sum(sub_ntypes == 1))
            print('type2:', np.sum(sub_ntypes == 2))
Da Zheng's avatar
Da Zheng committed
660

661

Da Zheng's avatar
Da Zheng committed
662
def check_metis_partition(g, extra_hops):
663
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=extra_hops)
664
665
666
667
    num_inner_nodes = 0
    num_inner_edges = 0
    if subgs is not None:
        for part_id, subg in subgs.items():
Da Zheng's avatar
Da Zheng committed
668
669
670
671
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
672
673
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(
                lnode_ids)
674
675
676
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

Da Zheng's avatar
Da Zheng committed
677
678
679
    if extra_hops == 0:
        return

680
    # partitions with node reshuffling
681
682
    subgs = dgl.transforms.metis_partition(g, 4, extra_cached_hops=extra_hops,
                                           reshuffle=True)
683
684
    num_inner_nodes = 0
    num_inner_edges = 0
Da Zheng's avatar
Da Zheng committed
685
    edge_cnts = np.zeros((g.number_of_edges(),))
686
687
688
689
690
691
    if subgs is not None:
        for part_id, subg in subgs.items():
            lnode_ids = np.nonzero(F.asnumpy(subg.ndata['inner_node']))[0]
            ledge_ids = np.nonzero(F.asnumpy(subg.edata['inner_edge']))[0]
            num_inner_nodes += len(lnode_ids)
            num_inner_edges += len(ledge_ids)
692
693
            assert np.sum(F.asnumpy(subg.ndata['part_id']) == part_id) == len(
                lnode_ids)
Da Zheng's avatar
Da Zheng committed
694
695
696
697
698
            nids = F.asnumpy(subg.ndata[dgl.NID])

            # ensure the local node Ids are contiguous.
            parent_ids = F.asnumpy(subg.ndata[dgl.NID])
            parent_ids = parent_ids[:len(lnode_ids)]
699
700
            assert np.all(
                parent_ids == np.arange(parent_ids[0], parent_ids[-1] + 1))
Da Zheng's avatar
Da Zheng committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714

            # count the local edges.
            parent_ids = F.asnumpy(subg.edata[dgl.EID])[ledge_ids]
            edge_cnts[parent_ids] += 1

            orig_ids = subg.ndata['orig_id']
            inner_node = F.asnumpy(subg.ndata['inner_node'])
            for nid in range(subg.number_of_nodes()):
                neighs = subg.predecessors(nid)
                old_neighs1 = F.gather_row(orig_ids, neighs)
                old_nid = F.asnumpy(orig_ids[nid])
                old_neighs2 = g.predecessors(old_nid)
                # If this is an inner node, it should have the full neighborhood.
                if inner_node[nid]:
715
716
                    assert np.all(np.sort(F.asnumpy(old_neighs1)) == np.sort(
                        F.asnumpy(old_neighs2)))
Da Zheng's avatar
Da Zheng committed
717
718
719
        # Normally, local edges are only counted once.
        assert np.all(edge_cnts == 1)

720
721
722
        assert num_inner_nodes == g.number_of_nodes()
        print(g.number_of_edges() - num_inner_edges)

723
724
725

@unittest.skipIf(F._default_context_str == 'gpu',
                 reason="It doesn't support GPU")
Da Zheng's avatar
Da Zheng committed
726
def test_reorder_nodes():
727
    g = create_large_graph(1000)
Da Zheng's avatar
Da Zheng committed
728
729
    new_nids = np.random.permutation(g.number_of_nodes())
    # TODO(zhengda) we need to test both CSR and COO.
730
    new_g = dgl.partition.reorder_nodes(g, new_nids)
Da Zheng's avatar
Da Zheng committed
731
732
733
734
735
736
737
738
739
    new_in_deg = new_g.in_degrees()
    new_out_deg = new_g.out_degrees()
    in_deg = g.in_degrees()
    out_deg = g.out_degrees()
    new_in_deg1 = F.scatter_row(in_deg, F.tensor(new_nids), in_deg)
    new_out_deg1 = F.scatter_row(out_deg, F.tensor(new_nids), out_deg)
    assert np.all(F.asnumpy(new_in_deg == new_in_deg1))
    assert np.all(F.asnumpy(new_out_deg == new_out_deg1))
    orig_ids = F.asnumpy(new_g.ndata['orig_id'])
740
741
742
743
744
745
746
    for nid in range(g.number_of_nodes()):
        neighs = F.asnumpy(g.successors(nid))
        new_neighs1 = new_nids[neighs]
        new_nid = new_nids[nid]
        new_neighs2 = new_g.successors(new_nid)
        assert np.all(np.sort(new_neighs1) == np.sort(F.asnumpy(new_neighs2)))

Da Zheng's avatar
Da Zheng committed
747
748
749
750
751
752
753
754
755
756
757
758
759
    for nid in range(new_g.number_of_nodes()):
        neighs = F.asnumpy(new_g.successors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.successors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

        neighs = F.asnumpy(new_g.predecessors(nid))
        old_neighs1 = orig_ids[neighs]
        old_nid = orig_ids[nid]
        old_neighs2 = g.predecessors(old_nid)
        assert np.all(np.sort(old_neighs1) == np.sort(F.asnumpy(old_neighs2)))

760

nv-dlasalle's avatar
nv-dlasalle committed
761
@parametrize_idtype
762
def test_compact(idtype):
763
    g1 = dgl.heterograph({
764
765
766
        ('user', 'follow', 'user'): ([1, 3], [3, 5]),
        ('user', 'plays', 'game'): ([2, 3, 2], [4, 4, 5]),
        ('game', 'wished-by', 'user'): ([6, 5], [7, 7])},
767
        {'user': 20, 'game': 10}, idtype=idtype, device=F.ctx())
768
769

    g2 = dgl.heterograph({
770
771
        ('game', 'clicked-by', 'user'): ([3], [1]),
        ('user', 'likes', 'user'): ([1, 8], [8, 9])},
772
        {'user': 20, 'game': 10}, idtype=idtype, device=F.ctx())
773

774
    g3 = dgl.heterograph({('user', '_E', 'user'): ((0, 1), (1, 2))},
775
                         {'user': 10}, idtype=idtype, device=F.ctx())
776
    g4 = dgl.heterograph({('user', '_E', 'user'): ((1, 3), (3, 5))},
777
                         {'user': 10}, idtype=idtype, device=F.ctx())
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

    def _check(g, new_g, induced_nodes):
        assert g.ntypes == new_g.ntypes
        assert g.canonical_etypes == new_g.canonical_etypes

        for ntype in g.ntypes:
            assert -1 not in induced_nodes[ntype]

        for etype in g.canonical_etypes:
            g_src, g_dst = g.all_edges(order='eid', etype=etype)
            g_src = F.asnumpy(g_src)
            g_dst = F.asnumpy(g_dst)
            new_g_src, new_g_dst = new_g.all_edges(order='eid', etype=etype)
            new_g_src_mapped = induced_nodes[etype[0]][F.asnumpy(new_g_src)]
            new_g_dst_mapped = induced_nodes[etype[2]][F.asnumpy(new_g_dst)]
            assert (g_src == new_g_src_mapped).all()
            assert (g_dst == new_g_dst_mapped).all()

    # Test default
    new_g1 = dgl.compact_graphs(g1)
798
799
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in
                     new_g1.ntypes}
800
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
801
    assert new_g1.idtype == idtype
802
803
804
805
806
807
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a dict
    new_g1 = dgl.compact_graphs(
808
809
        g1, always_preserve={'game': F.tensor([4, 7], idtype)})
    assert new_g1.idtype == idtype
810
811
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in
                     new_g1.ntypes}
812
813
814
815
816
817
818
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7])
    assert set(induced_nodes['game']) == set([4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)

    # Test with always_preserve given a tensor
    new_g3 = dgl.compact_graphs(
819
        g3, always_preserve=F.tensor([1, 7], idtype))
820
821
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in
                     new_g3.ntypes}
822
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
823

824
    assert new_g3.idtype == idtype
825
826
827
828
829
    assert set(induced_nodes['user']) == set([0, 1, 2, 7])
    _check(g3, new_g3, induced_nodes)

    # Test multiple graphs
    new_g1, new_g2 = dgl.compact_graphs([g1, g2])
830
831
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in
                     new_g1.ntypes}
832
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
833
834
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
835
836
837
838
839
840
841
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a dict
    new_g1, new_g2 = dgl.compact_graphs(
842
        [g1, g2], always_preserve={'game': F.tensor([4, 7], dtype=idtype)})
843
844
    induced_nodes = {ntype: new_g1.nodes[ntype].data[dgl.NID] for ntype in
                     new_g1.ntypes}
845
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
846
847
    assert new_g1.idtype == idtype
    assert new_g2.idtype == idtype
848
849
850
851
852
853
854
    assert set(induced_nodes['user']) == set([1, 3, 5, 2, 7, 8, 9])
    assert set(induced_nodes['game']) == set([3, 4, 5, 6, 7])
    _check(g1, new_g1, induced_nodes)
    _check(g2, new_g2, induced_nodes)

    # Test multiple graphs with always_preserve given a tensor
    new_g3, new_g4 = dgl.compact_graphs(
855
        [g3, g4], always_preserve=F.tensor([1, 7], dtype=idtype))
856
857
    induced_nodes = {ntype: new_g3.nodes[ntype].data[dgl.NID] for ntype in
                     new_g3.ntypes}
858
    induced_nodes = {k: F.asnumpy(v) for k, v in induced_nodes.items()}
859

860
861
862
    assert new_g3.idtype == idtype
    assert new_g4.idtype == idtype

863
864
865
866
    assert set(induced_nodes['user']) == set([0, 1, 2, 3, 5, 7])
    _check(g3, new_g3, induced_nodes)
    _check(g4, new_g4, induced_nodes)

867
868
869

@unittest.skipIf(F._default_context_str == 'gpu',
                 reason="GPU to simple not implemented")
nv-dlasalle's avatar
nv-dlasalle committed
870
@parametrize_idtype
871
def test_to_simple(idtype):
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
    # homogeneous graph
    g = dgl.graph((F.tensor([0, 1, 2, 1]), F.tensor([1, 2, 0, 2])))
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['h'] = F.tensor([[3.], [4.], [5.], [6.]])
    sg, wb = dgl.to_simple(g, writeback_mapping=True)
    u, v = g.all_edges(form='uv', order='eid')
    u = F.asnumpy(u).tolist()
    v = F.asnumpy(v).tolist()
    uv = list(zip(u, v))
    eid_map = F.asnumpy(wb)

    su, sv = sg.all_edges(form='uv', order='eid')
    su = F.asnumpy(su).tolist()
    sv = F.asnumpy(sv).tolist()
    suv = list(zip(su, sv))
    sc = F.asnumpy(sg.edata['count'])
    assert set(uv) == set(suv)
    for i, e in enumerate(suv):
        assert sc[i] == sum(e == _e for _e in uv)
    for i, e in enumerate(uv):
        assert eid_map[i] == suv.index(e)
    # shared ndata
    assert F.array_equal(sg.ndata['h'], g.ndata['h'])
    assert 'h' not in sg.edata
    # new ndata to sg
    sg.ndata['hh'] = F.tensor([[0.], [1.], [2.]])
    assert 'hh' not in g.ndata

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    assert 'h' not in sg.ndata
    assert 'h' not in sg.edata

904
905
906
907
908
909
910
911
    # test coalesce edge feature
    sg = dgl.to_simple(g, copy_edata=True, aggregator='arbitrary')
    assert F.allclose(sg.edata['h'][1], F.tensor([4.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='sum')
    assert F.allclose(sg.edata['h'][1], F.tensor([10.]))
    sg = dgl.to_simple(g, copy_edata=True, aggregator='mean')
    assert F.allclose(sg.edata['h'][1], F.tensor([5.]))

912
    # heterogeneous graph
913
    g = dgl.heterograph({
914
915
        ('user', 'follow', 'user'): ([0, 1, 2, 1, 1, 1],
                                     [1, 3, 2, 3, 4, 4]),
916
917
        ('user', 'plays', 'game'): (
            [3, 2, 1, 1, 3, 2, 2], [5, 3, 4, 4, 5, 3, 3])},
918
        idtype=idtype, device=F.ctx())
919
920
921
    g.nodes['user'].data['h'] = F.tensor([0, 1, 2, 3, 4])
    g.nodes['user'].data['hh'] = F.tensor([0, 1, 2, 3, 4])
    g.edges['follow'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
922
923
    sg, wb = dgl.to_simple(g, return_counts='weights', writeback_mapping=True,
                           copy_edata=True)
924
    g.nodes['game'].data['h'] = F.tensor([0, 1, 2, 3, 4, 5])
925
926
927
928
929
930

    for etype in g.canonical_etypes:
        u, v = g.all_edges(form='uv', order='eid', etype=etype)
        u = F.asnumpy(u).tolist()
        v = F.asnumpy(v).tolist()
        uv = list(zip(u, v))
931
        eid_map = F.asnumpy(wb[etype])
932
933
934
935
936
937
938
939
940
941
942
943

        su, sv = sg.all_edges(form='uv', order='eid', etype=etype)
        su = F.asnumpy(su).tolist()
        sv = F.asnumpy(sv).tolist()
        suv = list(zip(su, sv))
        sw = F.asnumpy(sg.edges[etype].data['weights'])

        assert set(uv) == set(suv)
        for i, e in enumerate(suv):
            assert sw[i] == sum(e == _e for _e in uv)
        for i, e in enumerate(uv):
            assert eid_map[i] == suv.index(e)
944
945
    # shared ndata
    assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
946
947
    assert F.array_equal(sg.nodes['user'].data['hh'],
                         g.nodes['user'].data['hh'])
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
    assert 'h' not in sg.nodes['game'].data
    # new ndata to sg
    sg.nodes['user'].data['hhh'] = F.tensor([0, 1, 2, 3, 4])
    assert 'hhh' not in g.nodes['user'].data
    # share edata
    feat_idx = F.asnumpy(wb[('user', 'follow', 'user')])
    _, indices = np.unique(feat_idx, return_index=True)
    assert np.array_equal(F.asnumpy(sg.edges['follow'].data['h']),
                          F.asnumpy(g.edges['follow'].data['h'])[indices])

    sg = dgl.to_simple(g, writeback_mapping=False, copy_ndata=False)
    for ntype in g.ntypes:
        assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)
    assert 'h' not in sg.nodes['user'].data
    assert 'hh' not in sg.nodes['user'].data
963

964
965
966
967
968
969
970
971
972
973
    # verify DGLGraph.edge_ids() after dgl.to_simple()
    # in case ids are not initialized in underlying coo2csr()
    u = F.tensor([0, 1, 2])
    v = F.tensor([1, 2, 3])
    eids = F.tensor([0, 1, 2])
    g = dgl.graph((u, v))
    assert F.array_equal(g.edge_ids(u, v), eids)
    sg = dgl.to_simple(g)
    assert F.array_equal(sg.edge_ids(u, v), eids)

974

nv-dlasalle's avatar
nv-dlasalle committed
975
@parametrize_idtype
976
def test_to_block(idtype):
977
    def check(g, bg, ntype, etype, dst_nodes, include_dst_in_src=True):
978
979
980
        if dst_nodes is not None:
            assert F.array_equal(bg.dstnodes[ntype].data[dgl.NID], dst_nodes)
        n_dst_nodes = bg.number_of_nodes('DST/' + ntype)
981
982
983
984
        if include_dst_in_src:
            assert F.array_equal(
                bg.srcnodes[ntype].data[dgl.NID][:n_dst_nodes],
                bg.dstnodes[ntype].data[dgl.NID])
985
986
987
988
989
990

        g = g[etype]
        bg = bg[etype]
        induced_src = bg.srcdata[dgl.NID]
        induced_dst = bg.dstdata[dgl.NID]
        induced_eid = bg.edata[dgl.EID]
991

992
993
994
995
996
997
998
999
1000
1001
1002
        bg_src, bg_dst = bg.all_edges(order='eid')
        src_ans, dst_ans = g.all_edges(order='eid')

        induced_src_bg = F.gather_row(induced_src, bg_src)
        induced_dst_bg = F.gather_row(induced_dst, bg_dst)
        induced_src_ans = F.gather_row(src_ans, induced_eid)
        induced_dst_ans = F.gather_row(dst_ans, induced_eid)

        assert F.array_equal(induced_src_bg, induced_src_ans)
        assert F.array_equal(induced_dst_bg, induced_dst_ans)

1003
    def checkall(g, bg, dst_nodes, include_dst_in_src=True):
1004
1005
        for etype in g.etypes:
            ntype = g.to_canonical_etype(etype)[2]
1006
            if dst_nodes is not None and ntype in dst_nodes:
1007
                check(g, bg, ntype, etype, dst_nodes[ntype], include_dst_in_src)
1008
            else:
1009
                check(g, bg, ntype, etype, None, include_dst_in_src)
1010

1011
    # homogeneous graph
1012
1013
    g = dgl.graph(
        (F.tensor([1, 2], dtype=idtype), F.tensor([2, 3], dtype=idtype)))
1014
1015
1016
1017
1018
1019
1020
1021
1022
    dst_nodes = F.tensor([3, 2], dtype=idtype)
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    check(g, bg, '_N', '_E', dst_nodes)

    src_nodes = bg.srcnodes['_N'].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    check(g, bg, '_N', '_E', dst_nodes)

    # heterogeneous graph
1023
    g = dgl.heterograph({
1024
1025
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
1026
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype, device=F.ctx())
1027
1028
1029
1030
1031
    g.nodes['A'].data['x'] = F.randn((5, 10))
    g.nodes['B'].data['x'] = F.randn((7, 5))
    g.edges['AA'].data['x'] = F.randn((4, 3))
    g.edges['AB'].data['x'] = F.randn((4, 3))
    g.edges['BA'].data['x'] = F.randn((2, 3))
1032
1033
    g_a = g['AA']

1034
1035
1036
1037
1038
    def check_features(g, bg):
        for ntype in bg.srctypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.srcnodes[ntype].data[key],
1039
1040
                    F.gather_row(g.nodes[ntype].data[key],
                                 bg.srcnodes[ntype].data[dgl.NID]))
1041
1042
1043
1044
        for ntype in bg.dsttypes:
            for key in g.nodes[ntype].data:
                assert F.array_equal(
                    bg.dstnodes[ntype].data[key],
1045
1046
                    F.gather_row(g.nodes[ntype].data[key],
                                 bg.dstnodes[ntype].data[dgl.NID]))
1047
1048
1049
1050
        for etype in bg.canonical_etypes:
            for key in g.edges[etype].data:
                assert F.array_equal(
                    bg.edges[etype].data[key],
1051
1052
                    F.gather_row(g.edges[etype].data[key],
                                 bg.edges[etype].data[dgl.EID]))
1053

1054
1055
    bg = dgl.to_block(g_a)
    check(g_a, bg, 'A', 'AA', None)
1056
    check_features(g_a, bg)
1057
1058
1059
1060
1061
    assert bg.number_of_src_nodes() == 5
    assert bg.number_of_dst_nodes() == 4

    bg = dgl.to_block(g_a, include_dst_in_src=False)
    check(g_a, bg, 'A', 'AA', None, False)
1062
    check_features(g_a, bg)
1063
1064
    assert bg.number_of_src_nodes() == 4
    assert bg.number_of_dst_nodes() == 4
1065

1066
    dst_nodes = F.tensor([4, 3, 2, 1], dtype=idtype)
1067
1068
    bg = dgl.to_block(g_a, dst_nodes)
    check(g_a, bg, 'A', 'AA', dst_nodes)
1069
    check_features(g_a, bg)
1070
1071
1072
1073

    g_ab = g['AB']

    bg = dgl.to_block(g_ab)
1074
    assert bg.idtype == idtype
1075
    assert bg.number_of_nodes('SRC/B') == 4
1076
1077
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID],
                         bg.dstnodes['B'].data[dgl.NID])
1078
    assert bg.number_of_nodes('DST/A') == 0
1079
    checkall(g_ab, bg, None)
1080
    check_features(g_ab, bg)
1081

1082
    dst_nodes = {'B': F.tensor([5, 6, 3, 1], dtype=idtype)}
1083
    bg = dgl.to_block(g, dst_nodes)
1084
    assert bg.number_of_nodes('SRC/B') == 4
1085
1086
    assert F.array_equal(bg.srcnodes['B'].data[dgl.NID],
                         bg.dstnodes['B'].data[dgl.NID])
1087
1088
    assert bg.number_of_nodes('DST/A') == 0
    checkall(g, bg, dst_nodes)
1089
    check_features(g, bg)
1090

1091
1092
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype),
                 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
1093
1094
    bg = dgl.to_block(g, dst_nodes=dst_nodes)
    checkall(g, bg, dst_nodes)
1095
    check_features(g, bg)
1096

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    # test specifying lhs_nodes with include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, src_nodes=src_nodes)
    checkall(g, bg, dst_nodes)
    check_features(g, bg)

    # test without include_dst_in_src
1107
1108
    dst_nodes = {'A': F.tensor([4, 3, 2, 1], dtype=idtype),
                 'B': F.tensor([3, 5, 6, 1], dtype=idtype)}
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False)
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)

    # test specifying lhs_nodes without include_dst_in_src
    src_nodes = {}
    for ntype in dst_nodes.keys():
        # use the previous run to get the list of source nodes
        src_nodes[ntype] = bg.srcnodes[ntype].data[dgl.NID]
    bg = dgl.to_block(g, dst_nodes=dst_nodes, include_dst_in_src=False,
1119
                      src_nodes=src_nodes)
1120
1121
1122
1123
    checkall(g, bg, dst_nodes, False)
    check_features(g, bg)


1124
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
nv-dlasalle's avatar
nv-dlasalle committed
1125
@parametrize_idtype
1126
def test_remove_edges(idtype):
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()
1145
        assert g1.idtype == g.idtype
1146
1147
1148

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
1149
1150
            g = dgl.graph(([0, 2, 1, 3], [1, 3, 2, 4]), idtype=idtype).formats(
                fmt)
1151
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1152
1153
            check(g1, None, g, edges_to_remove)

1154
            g = dgl.from_scipy(
1155
1156
                spsp.csr_matrix(([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])),
                                shape=(5, 5)),
1157
1158
                idtype=idtype).formats(fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove, idtype))
1159
1160
1161
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
1162
1163
1164
        ('A', 'AA', 'A'): ([0, 2, 1, 3], [1, 3, 2, 4]),
        ('A', 'AB', 'B'): ([0, 1, 3, 1], [1, 3, 5, 6]),
        ('B', 'BA', 'A'): ([2, 3], [3, 2])}, idtype=idtype)
1165
1166
1167
    g2 = dgl.remove_edges(g, {'AA': F.tensor([2], idtype),
                              'AB': F.tensor([3], idtype),
                              'BA': F.tensor([1], idtype)})
1168
1169
1170
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])
1171

1172
1173
1174
    g3 = dgl.remove_edges(g, {'AA': F.tensor([], idtype),
                              'AB': F.tensor([3], idtype),
                              'BA': F.tensor([1], idtype)})
1175
1176
1177
1178
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

1179
    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0], idtype)})
1180
    check(g4, 'AA', g, [])
1181
    check(g4, 'AB', g, [3, 1, 2, 0])
1182
1183
    check(g4, 'BA', g, [])

1184

nv-dlasalle's avatar
nv-dlasalle committed
1185
@parametrize_idtype
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1209
1210
1211
1212
1213
1214
1215
1216
1217
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    g = dgl.add_edges(g, [], [])
    g = dgl.add_edges(g, 0, [])
    g = dgl.add_edges(g, [], 0)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1237
1238
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
1250
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1251
1252
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
1253
1254
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
1265
    g = dgl.heterograph(
1266
1267
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    u = 0
    v = 1
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
1294
    g = dgl.heterograph(
1295
1296
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
1309
    g = dgl.heterograph(
1310
1311
1312
1313
1314
1315
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype),
                                          ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype),
                                          ctx=F.ctx())
1316
1317
1318
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1319
1320
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
1321
1322
1323
1324
1325
1326
1327
    g = dgl.add_edges(g, u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
1328
1329
1330
1331
    assert F.array_equal(g.nodes['user'].data['h'],
                         F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'],
                         F.tensor([2, 2, 2, 0], dtype=idtype))
1332
1333
1334
1335
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
1336
    g = create_test_heterograph3(idtype)
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g = dgl.add_edges(g, u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
1348
1349
1350
1351
1352
1353
    assert F.array_equal(g.nodes['user'].data['h'],
                         F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'],
                         F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'],
                         F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))
1354
1355
1356
1357
1358

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
1359
1360
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype),
                                          ctx=F.ctx())
1361
1362
1363
1364
1365
1366
1367
1368
1369
    g = dgl.add_edges(g, u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
1370
1371
1372
1373
1374
1375
1376
    assert F.array_equal(g.nodes['developer'].data['h'],
                         F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'],
                         F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'],
                         F.tensor([0, 0, 2, 2], dtype=idtype))

1377

nv-dlasalle's avatar
nv-dlasalle committed
1378
@parametrize_idtype
1379
1380
1381
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
1382
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
1383
1384
1385
1386
1387
1388
    new_g = dgl.add_nodes(g, 1)
    assert g.number_of_nodes() == 3
    assert new_g.number_of_nodes() == 4
    assert F.array_equal(new_g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
1389
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
1390
1391
1392
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g = dgl.add_nodes(g, 1, data={
        'h': F.copy_to(F.tensor([2], dtype=idtype), ctx=F.ctx())})
1393
1394
1395
1396
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
1397
    g = dgl.heterograph(
1398
1399
1400
1401
1402
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
    g = dgl.add_nodes(g, 2, data={
        'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())},
                      ntype='user')
1403
1404
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 3
1405
1406
    assert F.array_equal(g.nodes['user'].data['h'],
                         F.tensor([0, 0, 2, 2], dtype=idtype))
1407
1408
1409
1410
1411
    g = dgl.add_nodes(g, 2, ntype='game')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
1412
    g = create_test_heterograph3(idtype)
1413
    g = dgl.add_nodes(g, 1, ntype='user')
1414
1415
1416
    g = dgl.add_nodes(g, 2, data={
        'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())},
                      ntype='game')
1417
1418
1419
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
1420
1421
1422
1423
1424
    assert F.array_equal(g.nodes['user'].data['h'],
                         F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'],
                         F.tensor([2, 2, 2, 2], dtype=idtype))

1425

nv-dlasalle's avatar
nv-dlasalle committed
1426
@parametrize_idtype
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g = dgl.remove_edges(g, 1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
1470
    g = dgl.heterograph(
1471
1472
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
1473
1474
1475
1476
1477
1478
    e = 0
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1479
    g = dgl.heterograph(
1480
1481
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
    e = [0]
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g = dgl.remove_edges(g, e)
    assert g.number_of_edges() == 0

    # has data
1493
    g = dgl.heterograph(
1494
1495
1496
1497
1498
1499
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype),
                                          ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype),
                                          ctx=F.ctx())
1500
1501
1502
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_edges(g, 1)
    assert g.number_of_edges() == 1
1503
1504
1505
1506
    assert F.array_equal(g.nodes['user'].data['h'],
                         F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'],
                         F.tensor([2, 2, 2], dtype=idtype))
1507
1508
1509
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
1510
    g = create_test_heterograph3(idtype)
1511
1512
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype),
                                           ctx=F.ctx())
1513
1514
1515
1516
1517
    g = dgl.remove_edges(g, 1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
1518
1519
    assert F.array_equal(g.edges['plays'].data['h'],
                         F.tensor([1, 3, 4], dtype=idtype))
1520
1521
1522
    # remove all edges of 'develops'
    g = dgl.remove_edges(g, [0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
1523
1524
1525
1526
1527
1528
    assert F.array_equal(g.nodes['user'].data['h'],
                         F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'],
                         F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'],
                         F.tensor([3, 3], dtype=idtype))
1529

1530
1531
1532
1533
1534
1535
1536
1537
1538
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 2)
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
1539
1540
    assert F.array_equal(bg_r.batch_num_edges(),
                         F.tensor([2, 0, 2], dtype=F.int64))
1541
1542
1543
1544

    bg_r = dgl.remove_edges(bg, [0, 2])
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
1545
1546
    assert F.array_equal(bg_r.batch_num_edges(),
                         F.tensor([1, 0, 2], dtype=F.int64))
1547
1548
1549
1550

    bg_r = dgl.remove_edges(bg, F.tensor([0, 2], dtype=idtype))
    assert bg.batch_size == bg_r.batch_size
    assert F.array_equal(bg.batch_num_nodes(), bg_r.batch_num_nodes())
1551
1552
    assert F.array_equal(bg_r.batch_num_edges(),
                         F.tensor([1, 0, 2], dtype=F.int64))
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_edges(bg, 1, etype='follows')
    assert bg.batch_size == bg_r.batch_size
    ntypes = bg.ntypes
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1573
1574
1575
1576
    assert F.array_equal(bg_r.batch_num_edges('follows'),
                         F.tensor([1, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         bg.batch_num_edges('plays'))
1577
1578
1579
1580
1581

    bg_r = dgl.remove_edges(bg, 2, etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1582
1583
1584
1585
    assert F.array_equal(bg.batch_num_edges('follows'),
                         bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         F.tensor([2, 0, 1], dtype=F.int64))
1586
1587
1588
1589
1590

    bg_r = dgl.remove_edges(bg, [0, 1, 3], etype='follows')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1591
1592
1593
1594
    assert F.array_equal(bg_r.batch_num_edges('follows'),
                         F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'),
                         bg_r.batch_num_edges('plays'))
1595
1596
1597
1598
1599

    bg_r = dgl.remove_edges(bg, [1, 2], etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1600
1601
1602
1603
    assert F.array_equal(bg.batch_num_edges('follows'),
                         bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         F.tensor([1, 0, 1], dtype=F.int64))
1604

1605
1606
    bg_r = dgl.remove_edges(bg, F.tensor([0, 1, 3], dtype=idtype),
                            etype='follows')
1607
1608
1609
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1610
1611
1612
1613
    assert F.array_equal(bg_r.batch_num_edges('follows'),
                         F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('plays'),
                         bg_r.batch_num_edges('plays'))
1614
1615
1616
1617
1618

    bg_r = dgl.remove_edges(bg, F.tensor([1, 2], dtype=idtype), etype='plays')
    assert bg.batch_size == bg_r.batch_size
    for nty in ntypes:
        assert F.array_equal(bg.batch_num_nodes(nty), bg_r.batch_num_nodes(nty))
1619
1620
1621
1622
1623
    assert F.array_equal(bg.batch_num_edges('follows'),
                         bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         F.tensor([1, 0, 1], dtype=F.int64))

1624

nv-dlasalle's avatar
nv-dlasalle committed
1625
@parametrize_idtype
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g = dgl.remove_nodes(g, n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_nodes(g, F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
1672
    g = dgl.heterograph(
1673
1674
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
1675
1676
1677
1678
1679
1680
1681
1682
    n = 0
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
1683
    g = dgl.heterograph(
1684
1685
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
1686
1687
1688
1689
1690
1691
1692
1693
    n = [1]
    g = dgl.remove_nodes(g, n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
1694
    g = dgl.heterograph(
1695
1696
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype,
        device=F.ctx())
1697
1698
1699
1700
1701
1702
1703
    n = F.tensor([0], dtype=idtype)
    g = dgl.remove_nodes(g, n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
1704
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
1705
1706

    # heterogeneous graph
1707
    g = create_test_heterograph3(idtype)
1708
1709
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype),
                                           ctx=F.ctx())
1710
1711
1712
1713
1714
1715
    g = dgl.remove_nodes(g, 0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
1716
1717
    assert F.array_equal(g.nodes['user'].data['h'],
                         F.tensor([1, 1, 1], dtype=idtype))
1718
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
1719
1720
    assert F.array_equal(g.nodes['developer'].data['h'],
                         F.tensor([3, 3], dtype=idtype))
1721
1722
1723
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
1724
1725
    assert F.array_equal(g.edges['plays'].data['h'],
                         F.tensor([3, 4], dtype=idtype))
1726
1727
1728
1729
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))

1730
1731
1732
1733
1734
1735
1736
1737
    # batched graph
    ctx = F.ctx()
    g1 = dgl.graph(([0, 1], [1, 2]), num_nodes=5, idtype=idtype, device=ctx)
    g2 = dgl.graph(([], []), idtype=idtype, device=ctx)
    g3 = dgl.graph(([2, 3, 4], [3, 2, 1]), idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1)
    assert bg_r.batch_size == bg.batch_size
1738
1739
1740
1741
    assert F.array_equal(bg_r.batch_num_nodes(),
                         F.tensor([4, 0, 5], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(),
                         F.tensor([0, 0, 3], dtype=F.int64))
1742
1743
1744

    bg_r = dgl.remove_nodes(bg, [1, 7])
    assert bg_r.batch_size == bg.batch_size
1745
1746
1747
1748
    assert F.array_equal(bg_r.batch_num_nodes(),
                         F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(),
                         F.tensor([0, 0, 1], dtype=F.int64))
1749
1750
1751

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 7], dtype=idtype))
    assert bg_r.batch_size == bg.batch_size
1752
1753
1754
1755
    assert F.array_equal(bg_r.batch_num_nodes(),
                         F.tensor([4, 0, 4], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges(),
                         F.tensor([0, 0, 1], dtype=F.int64))
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

    # batched heterogeneous graph
    g1 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([1, 3], [0, 1])
    }, num_nodes_dict={'user': 4, 'game': 3}, idtype=idtype, device=ctx)
    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 2], [3, 4]),
        ('user', 'plays', 'game'): ([], [])
    }, num_nodes_dict={'user': 6, 'game': 2}, idtype=idtype, device=ctx)
    g3 = dgl.heterograph({
        ('user', 'follows', 'user'): ([], []),
        ('user', 'plays', 'game'): ([1, 2], [1, 2])
    }, idtype=idtype, device=ctx)
    bg = dgl.batch([g1, g2, g3])
    bg_r = dgl.remove_nodes(bg, 1, ntype='user')
    assert bg_r.batch_size == bg.batch_size
1773
1774
1775
1776
1777
1778
1779
1780
    assert F.array_equal(bg_r.batch_num_nodes('user'),
                         F.tensor([3, 6, 3], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'),
                         bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'),
                         F.tensor([0, 2, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         F.tensor([1, 0, 2], dtype=F.int64))
1781
1782
1783

    bg_r = dgl.remove_nodes(bg, 6, ntype='game')
    assert bg_r.batch_size == bg.batch_size
1784
1785
1786
1787
1788
1789
1790
1791
    assert F.array_equal(bg.batch_num_nodes('user'),
                         bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'),
                         F.tensor([3, 2, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'),
                         bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         F.tensor([2, 0, 1], dtype=F.int64))
1792
1793
1794

    bg_r = dgl.remove_nodes(bg, [1, 5, 6, 11], ntype='user')
    assert bg_r.batch_size == bg.batch_size
1795
1796
1797
1798
1799
1800
1801
1802
    assert F.array_equal(bg_r.batch_num_nodes('user'),
                         F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'),
                         bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'),
                         F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         F.tensor([1, 0, 1], dtype=F.int64))
1803
1804
1805

    bg_r = dgl.remove_nodes(bg, [0, 3, 4, 7], ntype='game')
    assert bg_r.batch_size == bg.batch_size
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
    assert F.array_equal(bg.batch_num_nodes('user'),
                         bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'),
                         F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'),
                         bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([1, 5, 6, 11], dtype=idtype),
                            ntype='user')
1817
    assert bg_r.batch_size == bg.batch_size
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
    assert F.array_equal(bg_r.batch_num_nodes('user'),
                         F.tensor([3, 4, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_nodes('game'),
                         bg_r.batch_num_nodes('game'))
    assert F.array_equal(bg_r.batch_num_edges('follows'),
                         F.tensor([0, 1, 0], dtype=F.int64))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         F.tensor([1, 0, 1], dtype=F.int64))

    bg_r = dgl.remove_nodes(bg, F.tensor([0, 3, 4, 7], dtype=idtype),
                            ntype='game')
1829
    assert bg_r.batch_size == bg.batch_size
1830
1831
1832
1833
1834
1835
1836
1837
1838
    assert F.array_equal(bg.batch_num_nodes('user'),
                         bg_r.batch_num_nodes('user'))
    assert F.array_equal(bg_r.batch_num_nodes('game'),
                         F.tensor([2, 0, 2], dtype=F.int64))
    assert F.array_equal(bg.batch_num_edges('follows'),
                         bg_r.batch_num_edges('follows'))
    assert F.array_equal(bg_r.batch_num_edges('plays'),
                         F.tensor([1, 0, 1], dtype=F.int64))

1839

nv-dlasalle's avatar
nv-dlasalle committed
1840
@parametrize_idtype
1841
1842
def test_add_selfloop(idtype):
    # homogeneous graph
1843
1844

    # test for fill_data is float
1845
1846
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
1847
1848
    g.edata['he1'] = F.copy_to(F.tensor([[0., 1.], [2., 3.], [4., 5.]]),
                               ctx=F.ctx())
1849
1850
1851
1852
1853
1854
1855
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
1856
1857
    assert F.array_equal(g.edata['he'],
                         F.tensor([1, 2, 3, 1, 1, 1], dtype=idtype))
1858
    assert F.array_equal(g.edata['he1'], F.tensor([[0., 1.], [2., 3.], [4., 5.],
1859
1860
                                                   [1., 1.], [1., 1.],
                                                   [1., 1.]]))
1861
1862
1863
1864

    # test for fill_data is int
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
1865
1866
    g.edata['he1'] = F.copy_to(F.tensor([[0, 1], [2, 3], [4, 5]], dtype=idtype),
                               ctx=F.ctx())
1867
1868
1869
1870
1871
1872
1873
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data=1)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
1874
1875
    assert F.array_equal(g.edata['he'],
                         F.tensor([1, 2, 3, 1, 1, 1], dtype=idtype))
1876
    assert F.array_equal(g.edata['he1'], F.tensor([[0, 1], [2, 3], [4, 5],
1877
1878
                                                   [1, 1], [1, 1], [1, 1]],
                                                  dtype=idtype))
1879
1880
1881
1882

    # test for fill_data is str
    g = dgl.graph(([0, 0, 2], [2, 1, 0]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1., 2., 3.]), ctx=F.ctx())
1883
1884
    g.edata['he1'] = F.copy_to(F.tensor([[0., 1.], [2., 3.], [4., 5.]]),
                               ctx=F.ctx())
1885
1886
1887
1888
1889
1890
1891
1892
1893
    g.ndata['hn'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data='sum')
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 6
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 0, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 1, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([1., 2., 3., 3., 2., 1.]))
    assert F.array_equal(g.edata['he1'], F.tensor([[0., 1.], [2., 3.], [4., 5.],
1894
1895
                                                   [4., 5.], [2., 3.],
                                                   [0., 1.]]))
1896
1897

    # bipartite graph
1898
    g = dgl.heterograph(
1899
1900
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype,
        device=F.ctx())
1901
1902
1903
1904
1905
1906
1907
1908
    # nothing will happend
    raise_error = False
    try:
        g = dgl.add_self_loop(g)
    except:
        raise_error = True
    assert raise_error

1909
    # test for fill_data is float
1910
    g = create_test_heterograph5(idtype)
1911
1912
    g.edges['follows'].data['h1'] = F.copy_to(F.tensor([[0., 1.], [1., 2.]]),
                                              ctx=F.ctx())
1913
1914
1915
1916
1917
1918
1919
1920
    g = dgl.add_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
1921
1922
1923
1924
1925
1926
1927
    assert F.array_equal(g.edges['follows'].data['h'],
                         F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h1'],
                         F.tensor([[0., 1.], [1., 2.], [1., 1.],
                                   [1., 1.], [1., 1.]]))
    assert F.array_equal(g.edges['plays'].data['h'],
                         F.tensor([1, 2], dtype=idtype))
1928
1929
1930

    # test for fill_data is int
    g = create_test_heterograph5(idtype)
1931
1932
    g.edges['follows'].data['h1'] = F.copy_to(
        F.tensor([[0, 1], [1, 2]], dtype=idtype), ctx=F.ctx())
1933
1934
1935
1936
1937
1938
1939
1940
    g = dgl.add_self_loop(g, fill_data=1, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
1941
1942
1943
1944
1945
1946
1947
    assert F.array_equal(g.edges['follows'].data['h'],
                         F.tensor([1, 2, 1, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['follows'].data['h1'],
                         F.tensor([[0, 1], [1, 2], [1, 1],
                                   [1, 1], [1, 1]], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'],
                         F.tensor([1, 2], dtype=idtype))
1948

1949
1950
1951
1952
1953
1954
1955
    # test for fill_data is str
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2], dtype=idtype),
                                      F.tensor([0, 1], dtype=idtype)),
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
                                    F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
1956
1957
1958
1959
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype),
                                          ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype),
                                          ctx=F.ctx())
1960
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1., 2.]), ctx=F.ctx())
1961
1962
    g.edges['follows'].data['h1'] = F.copy_to(F.tensor([[0., 1.], [1., 2.]]),
                                              ctx=F.ctx())
1963
1964
1965
1966
1967
1968
1969
1970
1971
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1., 2.]), ctx=F.ctx())
    g = dgl.add_self_loop(g, fill_data='mean', etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 5
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2, 0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 0, 1, 2], dtype=idtype))
1972
1973
1974
1975
1976
    assert F.array_equal(g.edges['follows'].data['h'],
                         F.tensor([1., 2., 1., 2., 0.]))
    assert F.array_equal(g.edges['follows'].data['h1'],
                         F.tensor([[0., 1.], [1., 2.], [0., 1.],
                                   [1., 2.], [0., 0.]]))
1977
1978
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1., 2.]))

1979
1980
1981
1982
1983
1984
1985
    raise_error = False
    try:
        g = dgl.add_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

1986

nv-dlasalle's avatar
nv-dlasalle committed
1987
@parametrize_idtype
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
def test_remove_selfloop(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 0, 0, 1], [1, 0, 0, 2]), idtype=idtype, device=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    assert F.array_equal(g.edata['he'], F.tensor([1, 4], dtype=idtype))

    # bipartite graph
1998
    g = dgl.heterograph(
1999
2000
        {('user', 'plays', 'game'): ([0, 1, 2], [1, 2, 2])}, idtype=idtype,
        device=F.ctx())
2001
2002
2003
2004
2005
2006
2007
2008
    # nothing will happend
    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error

2009
    g = create_test_heterograph4(idtype)
2010
2011
2012
2013
2014
2015
2016
2017
    g = dgl.remove_self_loop(g, etype='follows')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('follows') == 2
    assert g.number_of_edges('plays') == 2
    u, v = g.edges(form='uv', order='eid', etype='follows')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1], dtype=idtype))
2018
2019
2020
2021
    assert F.array_equal(g.edges['follows'].data['h'],
                         F.tensor([2, 4], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'],
                         F.tensor([1, 2], dtype=idtype))
2022
2023
2024
2025
2026
2027
2028

    raise_error = False
    try:
        g = dgl.remove_self_loop(g, etype='plays')
    except:
        raise_error = True
    assert raise_error
2029

2030
    # batch information
2031
2032
    g = dgl.graph(([0, 0, 0, 1, 3, 3, 4], [1, 0, 0, 2, 3, 4, 4]), idtype=idtype,
                  device=F.ctx())
2033
2034
2035
2036
2037
2038
2039
2040
    g.set_batch_num_nodes(F.tensor([3, 2], dtype=F.int64))
    g.set_batch_num_edges(F.tensor([4, 3], dtype=F.int64))
    g = dgl.remove_self_loop(g)
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 3
    assert F.array_equal(g.batch_num_nodes(), F.tensor([3, 2], dtype=F.int64))
    assert F.array_equal(g.batch_num_edges(), F.tensor([2, 1], dtype=F.int64))

2041

nv-dlasalle's avatar
nv-dlasalle committed
2042
@parametrize_idtype
2043
def test_reorder_graph(idtype):
2044
2045
2046
2047
2048
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 2, 3, 2, 3]),
                  idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.randn((g.num_nodes(), 3)), ctx=F.ctx())
    g.edata['w'] = F.copy_to(F.randn((g.num_edges(), 2)), ctx=F.ctx())

2049
    # call with default: node_permute_algo=None, edge_permute_algo='src'
2050
    rg = dgl.reorder_graph(g)
2051
2052
2053
2054
2055
2056
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'rcmk' node_permute_algo
    rg = dgl.reorder_graph(g, node_permute_algo='rcmk')
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
    assert dgl.NID in rg.ndata.keys()
    assert dgl.EID in rg.edata.keys()
    src = F.asnumpy(rg.edges()[0])
    assert np.array_equal(src, np.sort(src))

    # call with 'dst' edge_permute_algo
    rg = dgl.reorder_graph(g, edge_permute_algo='dst')
    dst = F.asnumpy(rg.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # call with unknown edge_permute_algo
    raise_error = False
    try:
        dgl.reorder_graph(g, edge_permute_algo='none')
    except:
        raise_error = True
    assert raise_error
2074
2075

    # reorder back to original according to stored ids
2076
    rg = dgl.reorder_graph(g, node_permute_algo='rcmk')
2077
2078
    rg2 = dgl.reorder_graph(rg, 'custom', permute_config={
        'nodes_perm': np.argsort(F.asnumpy(rg.ndata[dgl.NID]))})
2079
2080
2081
2082
    assert F.array_equal(g.ndata['h'], rg2.ndata['h'])
    assert F.array_equal(g.edata['w'], rg2.edata['w'])

    # do not store ids
2083
    rg = dgl.reorder_graph(g, store_ids=False)
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
    assert not dgl.NID in rg.ndata.keys()
    assert not dgl.EID in rg.edata.keys()

    # metis does not work on windows.
    if os.name == 'nt':
        pass
    else:
        # metis_partition may fail for small graph.
        mg = create_large_graph(1000).to(F.ctx())

        # call with metis strategy, but k is not specified
        raise_error = False
        try:
2097
            dgl.reorder_graph(mg, node_permute_algo='metis')
2098
2099
2100
2101
2102
2103
2104
        except:
            raise_error = True
        assert raise_error

        # call with metis strategy, k is specified
        raise_error = False
        try:
2105
            dgl.reorder_graph(mg,
2106
2107
                              node_permute_algo='metis',
                              permute_config={'k': 2})
2108
2109
2110
2111
2112
2113
2114
2115
        except:
            raise_error = True
        assert not raise_error

    # call with qualified nodes_perm specified
    nodes_perm = np.random.permutation(g.num_nodes())
    raise_error = False
    try:
2116
2117
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
            'nodes_perm': nodes_perm})
2118
2119
2120
2121
2122
2123
2124
    except:
        raise_error = True
    assert not raise_error

    # call with unqualified nodes_perm specified
    raise_error = False
    try:
2125
        dgl.reorder_graph(g, node_permute_algo='custom', permute_config={
2126
            'nodes_perm': nodes_perm[:g.num_nodes() - 1]})
2127
2128
2129
2130
2131
2132
2133
    except:
        raise_error = True
    assert raise_error

    # call with unsupported strategy
    raise_error = False
    try:
2134
        dgl.reorder_graph(g, node_permute_algo='cmk')
2135
2136
2137
2138
2139
2140
2141
2142
2143
    except:
        raise_error = True
    assert raise_error

    # heterograph: not supported
    raise_error = False
    try:
        hg = dgl.heterogrpah({('user', 'follow', 'user'): (
            [0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2144
        dgl.reorder_graph(hg)
2145
2146
2147
2148
    except:
        raise_error = True
    assert raise_error

2149
2150
    # TODO: shall we fix them?
    # add 'csc' format if needed
2151
2152
2153
2154
    # fg = g.formats('csr')
    # assert 'csc' not in sum(fg.formats().values(), [])
    # rfg = dgl.reorder_graph(fg)
    # assert 'csc' in sum(rfg.formats().values(), [])
2155

2156
2157
2158

@unittest.skipIf(dgl.backend.backend_name == "tensorflow",
                 reason="TF doesn't support a slicing operation")
nv-dlasalle's avatar
nv-dlasalle committed
2159
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
def test_norm_by_dst(idtype):
    # Case1: A homogeneous graph
    g = dgl.graph(([0, 1, 1], [1, 1, 2]), idtype=idtype, device=F.ctx())
    eweight = dgl.norm_by_dst(g)
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

    # Case2: A heterogeneous graph
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 1], [1, 1, 2])
    }, idtype=idtype, device=F.ctx())
    eweight = dgl.norm_by_dst(g, etype=('user', 'plays', 'game'))
    assert F.allclose(eweight, F.tensor([0.5, 0.5, 1.0]))

2174

nv-dlasalle's avatar
nv-dlasalle committed
2175
@parametrize_idtype
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
def test_module_add_self_loop(idtype):
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 3))

    # Case1: add self-loops with the default setting
    transform = dgl.AddSelfLoop()
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 4
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Case2: Remove self-loops first to avoid duplicate ones
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 5
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 2), (2, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Create a heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0], [1]),
        ('user', 'follows', 'user'): ([1], [3])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h1'] = F.randn((4, 2))
    g.edges['plays'].data['w1'] = F.randn((1, 3))
    g.nodes['game'].data['h2'] = F.randn((2, 4))
    g.edges['follows'].data['w2'] = F.randn((1, 5))

    # Case3: add self-loops for a heterogeneous graph
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 1
    assert new_g.num_edges('follows') == 5
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

    # Case4: add self-etypes for a heterogeneous graph
    transform = dgl.AddSelfLoop(new_etypes=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'),
        ('user', 'self', 'user'), ('game', 'self', 'game')
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 1
    assert new_g.num_edges('follows') == 5
    assert new_g.num_edges(('user', 'self', 'user')) == 4
    assert new_g.num_edges(('game', 'self', 'game')) == 2
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

2253

nv-dlasalle's avatar
nv-dlasalle committed
2254
@parametrize_idtype
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
def test_module_remove_self_loop(idtype):
    transform = dgl.RemoveSelfLoop()

    # Case1: homogeneous graph
    g = dgl.graph(([1, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 3))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert new_g.num_edges() == 1
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2)}
    assert 'h' in new_g.ndata
    assert 'w' in new_g.edata

    # Case2: heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 1]),
        ('user', 'follows', 'user'): ([1, 2], [2, 2])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h1'] = F.randn((3, 2))
    g.edges['plays'].data['w1'] = F.randn((2, 3))
    g.nodes['game'].data['h2'] = F.randn((2, 4))
    g.edges['follows'].data['w2'] = F.randn((2, 5))

    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    assert new_g.num_edges('plays') == 2
    assert new_g.num_edges('follows') == 1
    assert 'h1' in new_g.nodes['user'].data
    assert 'h2' in new_g.nodes['game'].data
    assert 'w1' in new_g.edges['plays'].data
    assert 'w2' in new_g.edges['follows'].data

2297

nv-dlasalle's avatar
nv-dlasalle committed
2298
@parametrize_idtype
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
def test_module_add_reverse(idtype):
    transform = dgl.AddReverse()

    # Case1: Add reverse edges for a homogeneous graph
    g = dgl.graph(([0], [1]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 3))
    g.edata['w'] = F.randn((g.num_edges(), 2))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 0, 1))
2315
2316
    assert F.allclose(F.narrow_row(new_g.edata['w'], 1, 2),
                      F.zeros((1, 2), F.float32, F.ctx()))
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340

    # Case2: Add reverse edges for a homogeneous graph and copy edata
    transform = dgl.AddReverse(copy_edata=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.num_nodes() == new_g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 0)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 0, 1))
    assert F.allclose(g.edata['w'], F.narrow_row(new_g.edata['w'], 1, 2))

    # Case3: Add reverse edges for a heterogeneous graph
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 1]),
        ('user', 'follows', 'user'): ([1, 2], [2, 2])
    }, device=F.ctx())
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
2341
2342
        ('user', 'plays', 'game'), ('user', 'follows', 'user'),
        ('game', 'rev_plays', 'user')}
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

    src, dst = new_g.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    src, dst = new_g.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2), (2, 1)}

    src, dst = new_g.edges(etype='rev_plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    # Case4: Enforce reverse edge types for symmetric canonical edge types
    transform = dgl.AddReverse(sym_new_etype=True)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert g.ntypes == new_g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('user', 'plays', 'game'), ('user', 'follows', 'user'),
        ('game', 'rev_plays', 'user'), ('user', 'rev_follows', 'user')}
    for nty in g.ntypes:
        assert g.num_nodes(nty) == new_g.num_nodes(nty)

    src, dst = new_g.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    src, dst = new_g.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 2), (2, 2)}

    src, dst = new_g.edges(etype='rev_plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(1, 1), (1, 0)}

    src, dst = new_g.edges(etype='rev_follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(2, 1), (2, 2)}

2386
2387
2388

@unittest.skipIf(F._default_context_str == 'gpu',
                 reason="GPU not supported for to_simple")
nv-dlasalle's avatar
nv-dlasalle committed
2389
@parametrize_idtype
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
def test_module_to_simple(idtype):
    transform = dgl.ToSimple()
    g = dgl.graph(([0, 1, 1], [1, 2, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.tensor([[0.1], [0.2], [0.3]])
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.num_nodes() == g.num_nodes()
    assert sg.num_edges() == 2
    src, dst = sg.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}
    assert F.allclose(sg.edata['count'], F.tensor([1, 2]))
    assert F.allclose(sg.ndata['h'], g.ndata['h'])

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2]),
        ('user', 'plays', 'game'): ([0, 1, 0], [1, 1, 1])
    })
    sg = transform(g)
    assert sg.device == g.device
    assert sg.idtype == g.idtype
    assert sg.ntypes == g.ntypes
    assert sg.canonical_etypes == g.canonical_etypes
    for nty in sg.ntypes:
        assert sg.num_nodes(nty) == g.num_nodes(nty)
    for ety in sg.canonical_etypes:
        assert sg.num_edges(ety) == 2

    src, dst = sg.edges(etype='follows')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2)}

    src, dst = sg.edges(etype='plays')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2428

nv-dlasalle's avatar
nv-dlasalle committed
2429
@parametrize_idtype
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
def test_module_line_graph(idtype):
    transform = dgl.LineGraph()
    g = dgl.graph(([0, 1, 1], [1, 0, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.tensor([[0.], [1.], [2.]])
    g.edata['w'] = F.tensor([[0.], [0.1], [0.2]])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (0, 2), (1, 0)}

    transform = dgl.LineGraph(backtracking=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_edges()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

2452

nv-dlasalle's avatar
nv-dlasalle committed
2453
@parametrize_idtype
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
def test_module_khop_graph(idtype):
    transform = dgl.KHopGraph(2)
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_nodes() == g.num_nodes()
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 2)}

2467

nv-dlasalle's avatar
nv-dlasalle committed
2468
@parametrize_idtype
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
def test_module_add_metapaths(idtype):
    g = dgl.heterograph({
        ('person', 'author', 'paper'): ([0, 0, 1], [1, 2, 2]),
        ('paper', 'accepted', 'venue'): ([1], [0]),
        ('paper', 'rejected', 'venue'): ([2], [1])
    }, idtype=idtype, device=F.ctx())
    g.nodes['venue'].data['h'] = F.randn((g.num_nodes('venue'), 2))
    g.edges['author'].data['h'] = F.randn((g.num_edges('author'), 3))

    # Case1: keep_orig_edges is True
    metapaths = {
2480
2481
2482
2483
        'accepted': [('person', 'author', 'paper'),
                     ('paper', 'accepted', 'venue')],
        'rejected': [('person', 'author', 'paper'),
                     ('paper', 'rejected', 'venue')]
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
    }
    transform = dgl.AddMetaPaths(metapaths)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert set(new_g.canonical_etypes) == {
        ('person', 'author', 'paper'), ('paper', 'accepted', 'venue'),
        ('paper', 'rejected', 'venue'), ('person', 'accepted', 'venue'),
        ('person', 'rejected', 'venue')
    }
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
    for ety in g.canonical_etypes:
        assert new_g.num_edges(ety) == g.num_edges(ety)
2499
2500
2501
2502
    assert F.allclose(g.nodes['venue'].data['h'],
                      new_g.nodes['venue'].data['h'])
    assert F.allclose(g.edges['author'].data['h'],
                      new_g.edges['author'].data['h'])
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520

    src, dst = new_g.edges(etype=('person', 'accepted', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

    src, dst = new_g.edges(etype=('person', 'rejected', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

    # Case2: keep_orig_edges is False
    transform = dgl.AddMetaPaths(metapaths, keep_orig_edges=False)
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.ntypes == g.ntypes
    assert len(new_g.canonical_etypes) == 2
    for nty in new_g.ntypes:
        assert new_g.num_nodes(nty) == g.num_nodes(nty)
2521
2522
    assert F.allclose(g.nodes['venue'].data['h'],
                      new_g.nodes['venue'].data['h'])
2523
2524
2525
2526
2527
2528
2529
2530
2531

    src, dst = new_g.edges(etype=('person', 'accepted', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0)}

    src, dst = new_g.edges(etype=('person', 'rejected', 'venue'))
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 1)}

2532

nv-dlasalle's avatar
nv-dlasalle committed
2533
@parametrize_idtype
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
def test_module_compose(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    transform = dgl.Compose([dgl.AddReverse(), dgl.AddSelfLoop()])
    new_g = transform(g)
    assert new_g.device == g.device
    assert new_g.idtype == g.idtype
    assert new_g.num_edges() == 7

    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (1, 0), (2, 1), (0, 0), (1, 1), (2, 2)}

2546

nv-dlasalle's avatar
nv-dlasalle committed
2547
@parametrize_idtype
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
def test_module_gcnnorm(idtype):
    g = dgl.heterograph({
        ('A', 'r1', 'A'): ([0, 1, 2], [0, 0, 1]),
        ('A', 'r2', 'B'): ([0, 0], [1, 1]),
        ('B', 'r3', 'B'): ([0, 1, 2], [0, 0, 1])
    }, idtype=idtype, device=F.ctx())
    g.edges['r3'].data['w'] = F.tensor([0.1, 0.2, 0.3])
    transform = dgl.GCNNorm()
    new_g = transform(g)
    assert 'w' not in new_g.edges[('A', 'r2', 'B')].data
    assert F.allclose(new_g.edges[('A', 'r1', 'A')].data['w'],
2559
2560
2561
                      F.tensor([1. / 2, 1. / math.sqrt(2), 0.]))
    assert F.allclose(new_g.edges[('B', 'r3', 'B')].data['w'],
                      F.tensor([1. / 3, 2. / 3, 0.]))
2562

2563
2564
2565

@unittest.skipIf(dgl.backend.backend_name != 'pytorch',
                 reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2566
@parametrize_idtype
2567
def test_module_ppr(idtype):
2568
2569
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype,
                  device=F.ctx())
2570
2571
2572
2573
2574
2575
2576
2577
2578
    g.ndata['h'] = F.randn((6, 2))
    transform = dgl.PPR(avg_degree=2)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5), (2, 2),
2579
2580
                    (2, 3), (2, 4), (3, 3), (3, 5), (4, 3), (4, 4), (4, 5),
                    (5, 5)}
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Prior edge weights
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (2, 4),
                    (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}

2592
2593
2594

@unittest.skipIf(dgl.backend.backend_name != 'pytorch',
                 reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2595
@parametrize_idtype
2596
2597
def test_module_heat_kernel(idtype):
    # Case1: directed graph
2598
2599
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype,
                  device=F.ctx())
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
    g.ndata['h'] = F.randn((6, 2))
    transform = dgl.HeatKernel(avg_degree=1)
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Case2: weighted undirected graph
    g = dgl.graph(([0, 1, 2, 3], [1, 0, 3, 2]), idtype=idtype, device=F.ctx())
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

2617
2618
2619

@unittest.skipIf(dgl.backend.backend_name != 'pytorch',
                 reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2620
@parametrize_idtype
2621
2622
def test_module_gdc(idtype):
    transform = dgl.GDC([0.1, 0.2, 0.1], avg_degree=1)
2623
2624
    g = dgl.graph(([0, 1, 2, 3, 4], [2, 3, 4, 5, 3]), idtype=idtype,
                  device=F.ctx())
2625
2626
2627
2628
2629
2630
2631
    g.ndata['h'] = F.randn((6, 2))
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.num_nodes() == g.num_nodes()
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
2632
2633
    assert eset == {(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (1, 5), (2, 2),
                    (2, 3),
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
                    (2, 4), (3, 3), (3, 5), (4, 3), (4, 4), (4, 5), (5, 5)}
    assert F.allclose(g.ndata['h'], new_g.ndata['h'])
    assert 'w' in new_g.edata

    # Prior edge weights
    g.edata['w'] = F.tensor([0.1, 0.2, 0.3, 0.4, 0.5])
    new_g = transform(g)
    src, dst = new_g.edges()
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3), (4, 3), (4, 4), (5, 5)}

2645
2646
2647

@unittest.skipIf(dgl.backend.backend_name == "tensorflow",
                 reason="TF doesn't support a slicing operation")
nv-dlasalle's avatar
nv-dlasalle committed
2648
@parametrize_idtype
2649
2650
2651
2652
2653
def test_module_node_shuffle(idtype):
    transform = dgl.NodeShuffle()
    g = dgl.heterograph({
        ('A', 'r', 'B'): ([0, 1], [1, 2]),
    }, idtype=idtype, device=F.ctx())
2654
2655
    g.nodes['B'].data['h'] = F.randn((g.num_nodes('B'), 2))
    old_nfeat = g.nodes['B'].data['h']
2656
    new_g = transform(g)
2657
2658
    new_nfeat = g.nodes['B'].data['h']
    assert F.allclose(old_nfeat, new_nfeat)
2659

2660
2661
2662

@unittest.skipIf(dgl.backend.backend_name != 'pytorch',
                 reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2663
@parametrize_idtype
2664
2665
2666
2667
2668
def test_module_drop_node(idtype):
    transform = dgl.DropNode()
    g = dgl.heterograph({
        ('A', 'r', 'B'): ([0, 1], [1, 2]),
    }, idtype=idtype, device=F.ctx())
2669
    num_nodes_old = g.num_nodes()
2670
2671
2672
2673
2674
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
2675
2676
2677
    num_nodes_new = g.num_nodes()
    # Ensure that the original graph is not corrupted
    assert num_nodes_old == num_nodes_new
2678

2679
2680
2681

@unittest.skipIf(dgl.backend.backend_name != 'pytorch',
                 reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2682
@parametrize_idtype
2683
2684
2685
2686
2687
2688
def test_module_drop_edge(idtype):
    transform = dgl.DropEdge()
    g = dgl.heterograph({
        ('A', 'r1', 'B'): ([0, 1], [1, 2]),
        ('C', 'r2', 'C'): ([3, 4, 5], [6, 7, 8])
    }, idtype=idtype, device=F.ctx())
2689
    num_edges_old = g.num_edges()
2690
2691
2692
2693
2694
    new_g = transform(g)
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
2695
2696
2697
    num_edges_new = g.num_edges()
    # Ensure that the original graph is not corrupted
    assert num_edges_old == num_edges_new
2698

2699

nv-dlasalle's avatar
nv-dlasalle committed
2700
@parametrize_idtype
2701
2702
2703
2704
2705
2706
def test_module_add_edge(idtype):
    transform = dgl.AddEdge()
    g = dgl.heterograph({
        ('A', 'r1', 'B'): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5]),
        ('C', 'r2', 'C'): ([0, 1, 2, 3, 4], [1, 2, 3, 4, 5])
    }, idtype=idtype, device=F.ctx())
2707
    num_edges_old = g.num_edges()
2708
2709
2710
2711
2712
2713
2714
    new_g = transform(g)
    assert new_g.num_edges(('A', 'r1', 'B')) == 6
    assert new_g.num_edges(('C', 'r2', 'C')) == 6
    assert new_g.idtype == g.idtype
    assert new_g.device == g.device
    assert new_g.ntypes == g.ntypes
    assert new_g.canonical_etypes == g.canonical_etypes
2715
2716
2717
    num_edges_new = g.num_edges()
    # Ensure that the original graph is not corrupted
    assert num_edges_old == num_edges_new
2718

2719

nv-dlasalle's avatar
nv-dlasalle committed
2720
@parametrize_idtype
2721
2722
2723
2724
def test_module_random_walk_pe(idtype):
    transform = dgl.RandomWalkPE(2, 'rwpe')
    g = dgl.graph(([0, 1, 1], [1, 1, 0]), idtype=idtype, device=F.ctx())
    new_g = transform(g)
2725
    tgt = F.copy_to(F.tensor([[0., 0.5], [0.5, 0.75]]), g.device)
2726
2727
    assert F.allclose(new_g.ndata['rwpe'], tgt)

2728

nv-dlasalle's avatar
nv-dlasalle committed
2729
@parametrize_idtype
2730
def test_module_laplacian_pe(idtype):
2731
2732
2733
2734
2735
    g = dgl.graph(([2, 1, 0, 3, 1, 1], [3, 1, 1, 2, 1, 0]), idtype=idtype,
                  device=F.ctx())
    tgt_eigval = F.copy_to(
        F.repeat(F.tensor([[1.1534e-17, 1.3333e+00, 2., np.nan, np.nan]]),
                 g.num_nodes(), dim=0), g.device)
2736
    tgt_pe = F.copy_to(F.tensor([[0.5, 0.86602539, 0., 0., 0.],
2737
2738
2739
                                 [0.86602539, 0.5, 0., 0., 0.],
                                 [0., 0., 0.70710677, 0., 0.],
                                 [0., 0., 0.70710677, 0., 0.]]), g.device)
2740
2741
2742

    # without padding (k<n)
    transform = dgl.LaplacianPE(2, feat_name='lappe')
2743
2744
2745
    new_g = transform(g)
    # tensorflow has no abs() api
    if dgl.backend.backend_name == 'tensorflow':
2746
        assert F.allclose(new_g.ndata['lappe'].__abs__(), tgt_pe[:, :2])
2747
2748
    # pytorch & mxnet
    else:
2749
        assert F.allclose(new_g.ndata['lappe'].abs(), tgt_pe[:, :2])
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761

    # with padding (k>=n)
    transform = dgl.LaplacianPE(5, feat_name='lappe', padding=True)
    new_g = transform(g)
    # tensorflow has no abs() api
    if dgl.backend.backend_name == 'tensorflow':
        assert F.allclose(new_g.ndata['lappe'].__abs__(), tgt_pe)
    # pytorch & mxnet
    else:
        assert F.allclose(new_g.ndata['lappe'].abs(), tgt_pe)

    # with eigenvalues
2762
2763
    transform = dgl.LaplacianPE(5, feat_name='lappe', eigval_name='eigval',
                                padding=True)
2764
2765
2766
    new_g = transform(g)
    # tensorflow has no abs() api
    if dgl.backend.backend_name == 'tensorflow':
2767
        assert F.allclose(new_g.ndata['eigval'][:, :3], tgt_eigval[:, :3])
2768
2769
2770
        assert F.allclose(new_g.ndata['lappe'].__abs__(), tgt_pe)
    # pytorch & mxnet
    else:
2771
        assert F.allclose(new_g.ndata['eigval'][:, :3], tgt_eigval[:, :3])
2772
        assert F.allclose(new_g.ndata['lappe'].abs(), tgt_pe)
2773

2774
2775
2776

@unittest.skipIf(dgl.backend.backend_name != 'pytorch',
                 reason='Only support PyTorch for now')
2777
2778
2779
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature']))
def test_module_sign(g):
    import torch
2780

Mufei Li's avatar
Mufei Li committed
2781
    atol = 1e-06
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795

    ctx = F.ctx()
    g = g.to(ctx)
    adj = g.adj(transpose=True, scipy_fmt='coo').todense()
    adj = torch.tensor(adj).float().to(ctx)

    weight_adj = g.adj(transpose=True, scipy_fmt='coo').astype(float).todense()
    weight_adj = torch.tensor(weight_adj).float().to(ctx)
    src, dst = g.edges()
    src, dst = src.long(), dst.long()
    weight_adj[dst, src] = g.edata['scalar_w']

    # raw
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', diffuse_op='raw')
2796
    g = transform(g)
Mufei Li's avatar
Mufei Li committed
2797
    target = torch.matmul(adj, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2798
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2799

2800
2801
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h',
                                  eweight_name='scalar_w', diffuse_op='raw')
2802
    g = transform(g)
Mufei Li's avatar
Mufei Li committed
2803
    target = torch.matmul(weight_adj, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2804
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2805
2806
2807
2808

    # rw
    adj_rw = torch.matmul(torch.diag(1 / adj.sum(dim=1)), adj)
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', diffuse_op='rw')
2809
    g = transform(g)
Mufei Li's avatar
Mufei Li committed
2810
    target = torch.matmul(adj_rw, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2811
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2812

2813
2814
2815
2816
    weight_adj_rw = torch.matmul(torch.diag(1 / weight_adj.sum(dim=1)),
                                 weight_adj)
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h',
                                  eweight_name='scalar_w', diffuse_op='rw')
2817
    g = transform(g)
Mufei Li's avatar
Mufei Li committed
2818
    target = torch.matmul(weight_adj_rw, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2819
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2820
2821
2822
2823

    # gcn
    raw_eweight = g.edata['scalar_w']
    gcn_norm = dgl.GCNNorm()
2824
    g = gcn_norm(g)
2825
2826
2827
    adj_gcn = adj.clone()
    adj_gcn[dst, src] = g.edata.pop('w')
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', diffuse_op='gcn')
2828
2829
    g = transform(g)
    target = torch.matmul(adj_gcn, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2830
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2831
2832

    gcn_norm = dgl.GCNNorm('scalar_w')
2833
    g = gcn_norm(g)
2834
2835
2836
2837
2838
    weight_adj_gcn = weight_adj.clone()
    weight_adj_gcn[dst, src] = g.edata['scalar_w']
    g.edata['scalar_w'] = raw_eweight
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h',
                                  eweight_name='scalar_w', diffuse_op='gcn')
2839
2840
    g = transform(g)
    target = torch.matmul(weight_adj_gcn, g.ndata['h'])
Mufei Li's avatar
Mufei Li committed
2841
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2842
2843
2844

    # ppr
    alpha = 0.2
2845
2846
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h', diffuse_op='ppr',
                                  alpha=alpha)
2847
    g = transform(g)
2848
2849
    target = (1 - alpha) * torch.matmul(adj_gcn, g.ndata['h']) + alpha * \
             g.ndata['h']
Mufei Li's avatar
Mufei Li committed
2850
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2851

2852
2853
    transform = dgl.SIGNDiffusion(k=1, in_feat_name='h',
                                  eweight_name='scalar_w',
2854
                                  diffuse_op='ppr', alpha=alpha)
2855
    g = transform(g)
2856
2857
    target = (1 - alpha) * torch.matmul(weight_adj_gcn, g.ndata['h']) + alpha * \
             g.ndata['h']
Mufei Li's avatar
Mufei Li committed
2858
    assert torch.allclose(g.ndata['out_feat_1'], target, atol=atol)
2859

2860
2861
2862

@unittest.skipIf(dgl.backend.backend_name != 'pytorch',
                 reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2863
@parametrize_idtype
2864
2865
def test_module_row_feat_normalizer(idtype):
    # Case1: Normalize features of a homogeneous graph.
2866
    transform = dgl.RowFeatNormalizer(subtract_min=True,
2867
2868
                                      node_feat_names=['h'],
                                      edge_feat_names=['w'])
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
    g = dgl.rand_graph(5, 5, idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 128))
    g.edata['w'] = F.randn((g.num_edges(), 128))
    g = transform(g)
    assert g.ndata['h'].shape == (g.num_nodes(), 128)
    assert g.edata['w'].shape == (g.num_edges(), 128)
    assert F.allclose(g.ndata['h'].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))
    assert F.allclose(g.edata['w'].sum(1), F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))

    # Case2: Normalize features of a heterogeneous graph.
2879
    transform = dgl.RowFeatNormalizer(subtract_min=True,
2880
2881
                                      node_feat_names=['h', 'h2'],
                                      edge_feat_names=['w'])
2882
2883
2884
2885
2886
2887
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2]), F.tensor([3, 4])),
        ('player', 'plays', 'game'): (F.tensor([2, 2]), F.tensor([1, 1]))
    }, idtype=idtype, device=F.ctx())
    g.ndata['h'] = {'game': F.randn((2, 128)), 'player': F.randn((3, 128))}
    g.ndata['h2'] = {'user': F.randn((5, 128))}
2888
2889
    g.edata['w'] = {('user', 'follows', 'user'): F.randn((2, 128)),
                    ('player', 'plays', 'game'): F.randn((2, 128))}
2890
2891
2892
2893
2894
2895
2896
2897
    g = transform(g)
    assert g.ndata['h']['game'].shape == (2, 128)
    assert g.ndata['h']['player'].shape == (3, 128)
    assert g.ndata['h2']['user'].shape == (5, 128)
    assert g.edata['w'][('user', 'follows', 'user')].shape == (2, 128)
    assert g.edata['w'][('player', 'plays', 'game')].shape == (2, 128)
    assert F.allclose(g.ndata['h']['game'].sum(1), F.tensor([1.0, 1.0]))
    assert F.allclose(g.ndata['h']['player'].sum(1), F.tensor([1.0, 1.0, 1.0]))
2898
2899
2900
2901
2902
2903
2904
    assert F.allclose(g.ndata['h2']['user'].sum(1),
                      F.tensor([1.0, 1.0, 1.0, 1.0, 1.0]))
    assert F.allclose(g.edata['w'][('user', 'follows', 'user')].sum(1),
                      F.tensor([1.0, 1.0]))
    assert F.allclose(g.edata['w'][('player', 'plays', 'game')].sum(1),
                      F.tensor([1.0, 1.0]))

2905

2906
2907
@unittest.skipIf(dgl.backend.backend_name != 'pytorch',
                 reason='Only support PyTorch for now')
nv-dlasalle's avatar
nv-dlasalle committed
2908
@parametrize_idtype
2909
2910
def test_module_feat_mask(idtype):
    # Case1: Mask node and edge feature tensors of a homogeneous graph.
2911
    transform = dgl.FeatMask(node_feat_names=['h'], edge_feat_names=['w'])
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
    g = dgl.rand_graph(5, 20, idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.ones((g.num_nodes(), 10))
    g.edata['w'] = F.ones((g.num_edges(), 20))
    g = transform(g)
    assert g.device == g.device
    assert g.idtype == g.idtype
    assert g.ndata['h'].shape == (g.num_nodes(), 10)
    assert g.edata['w'].shape == (g.num_edges(), 20)

    # Case2: Mask node and edge feature tensors of a heterogeneous graph.
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2]), F.tensor([3, 4])),
        ('player', 'plays', 'game'): (F.tensor([2, 2]), F.tensor([1, 1]))
    }, idtype=idtype, device=F.ctx())
    g.ndata['h'] = {'game': F.randn((2, 5)), 'player': F.randn((3, 5))}
    g.edata['w'] = {('user', 'follows', 'user'): F.randn((2, 5)),
                    ('player', 'plays', 'game'): F.randn((2, 5))}
    g = transform(g)
    assert g.device == g.device
    assert g.idtype == g.idtype
    assert g.ndata['h']['game'].shape == (2, 5)
    assert g.ndata['h']['player'].shape == (3, 5)
    assert g.edata['w'][('user', 'follows', 'user')].shape == (2, 5)
    assert g.edata['w'][('player', 'plays', 'game')].shape == (2, 5)

2937

2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
@parametrize_idtype
def test_shortest_dist(idtype):
    g = dgl.graph(([0, 1, 1, 2], [2, 0, 3, 3]), idtype=idtype, device=F.ctx())

    # case 1: directed single source
    dist = dgl.shortest_dist(g, root=0)
    tgt = F.copy_to(F.tensor([0, -1, 1, 2], dtype=F.int64), g.device)
    assert F.array_equal(dist, tgt)

    # case 2: undirected all pairs
    dist, paths = dgl.shortest_dist(g, root=None, return_paths=True)
    tgt_dist = F.copy_to(
        F.tensor([
            [0, -1, 1, 2],
            [1, 0, 2, 1],
            [-1, -1, 0, 1],
            [-1, -1, -1, 0]
        ], dtype=F.int64),
        g.device
    )
    tgt_paths = F.copy_to(
        F.tensor([
            [[-1, -1], [-1, -1], [0, -1], [0, 3]],
            [[1, -1], [-1, -1], [1, 0], [2, -1]],
            [[-1, -1], [-1, -1], [-1, -1], [3, -1]],
            [[-1, -1], [-1, -1], [-1, -1], [-1, -1]]
        ], dtype=F.int64),
        g.device
    )
    assert F.array_equal(dist, tgt_dist)
    assert F.array_equal(paths, tgt_paths)

2970

2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
@parametrize_idtype
def test_module_to_levi(idtype):
    transform = dgl.ToLevi()
    g = dgl.graph(([0, 1, 2, 3], [1, 2, 3, 0]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.randn((g.num_nodes(), 2))
    g.edata['w'] = F.randn((g.num_edges(), 2))
    lg = transform(g)
    assert lg.device == g.device
    assert lg.idtype == g.idtype
    assert lg.ntypes == ['edge', 'node']
    assert lg.canonical_etypes == [('edge', 'e2n', 'node'),
                                   ('node', 'n2e', 'edge')]
    assert lg.num_nodes('node') == g.num_nodes()
    assert lg.num_nodes('edge') == g.num_edges()
    assert lg.num_edges('n2e') == g.num_edges()
    assert lg.num_edges('e2n') == g.num_edges()

    src, dst = lg.edges(etype='n2e')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 0), (1, 1), (2, 2), (3, 3)}

    src, dst = lg.edges(etype='e2n')
    eset = set(zip(list(F.asnumpy(src)), list(F.asnumpy(dst))))
    assert eset == {(0, 1), (1, 2), (2, 3), (3, 0)}

    assert F.allclose(lg.nodes['node'].data['h'], g.ndata['h'])
    assert F.allclose(lg.nodes['edge'].data['w'], g.edata['w'])

2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036

@parametrize_idtype
def test_module_svd_pe(idtype):
    g = dgl.graph(
        (
            [0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4],
            [2, 3, 0, 2, 0, 2, 3, 4, 3, 4, 0, 1]
        ),
        idtype=idtype,
        device=F.ctx(),
    )
    # without padding
    tgt_pe = F.copy_to(
        F.tensor(
            [
                [0.6669, 0.3068, 0.7979, 0.8477],
                [0.6311, 0.6101, 0.1248, 0.5137],
                [1.1993, 0.0665, 0.9183, 0.1455],
                [0.5682, 0.6766, 0.8952, 0.6449],
                [0.3393, 0.8363, 0.6500, 0.4564],
            ]
        ),
        g.device,
    )
    transform_1 = dgl.SVDPE(k=2, feat_name="svd_pe")
    g1 = transform_1(g)
    if dgl.backend.backend_name == "tensorflow":
        assert F.allclose(g1.ndata["svd_pe"].__abs__(), tgt_pe)
    else:
        assert F.allclose(g1.ndata["svd_pe"].abs(), tgt_pe)

    # with padding
    transform_2 = dgl.SVDPE(k=6, feat_name="svd_pe", padding=True)
    g2 = transform_2(g)
    assert F.shape(g2.ndata["svd_pe"]) == (5, 12)


if __name__ == "__main__":
3037
    test_partition_with_halo()
3038
    test_module_heat_kernel(F.int32)