1_first.py 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
.. currentmodule:: dgl

DGL at a Glance
=========================

**Author**: `Minjie Wang <https://jermainewang.github.io/>`_, Quan Gan, `Jake
Zhao <https://cs.nyu.edu/~jakezhao/>`_, Zheng Zhang

DGL is a Python package dedicated to deep learning on graphs, built atop
existing tensor DL frameworks (e.g. Pytorch, MXNet) and simplifying the
implementation of graph-based neural networks.

The goal of this tutorial:

- Understand how DGL enables computation on graph from a high level.
- Train a simple graph neural network in DGL to classify nodes in a graph.

At the end of this tutorial, we hope you get a brief feeling of how DGL works.

*This tutorial assumes basic familiarity with pytorch.*
"""

###############################################################################
# Step 0: Problem description
# ---------------------------
#
# We start with the well-known "Zachary's karate club" problem. The karate club
# is a social network which captures 34 members and document pairwise links
# between members who interact outside the club.  The club later divides into
# two communities led by the instructor (node 0) and the club president (node
# 33). The network is visualized as follows with the color indicating the
# community:
#
# .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/img/karate-club.png
#    :align: center
#
# The task is to predict which side (0 or 33) each member tends to join given
# the social network itself.


###############################################################################
# Step 1: Creating a graph in DGL
# -------------------------------
# Creating the graph for Zachary's karate club goes as follows:

import dgl

def build_karate_club_graph():
    g = dgl.DGLGraph()
    # add 34 nodes into the graph; nodes are labeled from 0~33
    g.add_nodes(34)
    # all 78 edges as a list of tuples
    edge_list = [(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2),
        (4, 0), (5, 0), (6, 0), (6, 4), (6, 5), (7, 0), (7, 1),
        (7, 2), (7, 3), (8, 0), (8, 2), (9, 2), (10, 0), (10, 4),
        (10, 5), (11, 0), (12, 0), (12, 3), (13, 0), (13, 1), (13, 2),
        (13, 3), (16, 5), (16, 6), (17, 0), (17, 1), (19, 0), (19, 1),
        (21, 0), (21, 1), (25, 23), (25, 24), (27, 2), (27, 23),
        (27, 24), (28, 2), (29, 23), (29, 26), (30, 1), (30, 8),
        (31, 0), (31, 24), (31, 25), (31, 28), (32, 2), (32, 8),
        (32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23),
        (32, 29), (32, 30), (32, 31), (33, 8), (33, 9), (33, 13),
        (33, 14), (33, 15), (33, 18), (33, 19), (33, 20), (33, 22),
        (33, 23), (33, 26), (33, 27), (33, 28), (33, 29), (33, 30),
        (33, 31), (33, 32)]
    # add edges two lists of nodes: src and dst
    src, dst = tuple(zip(*edge_list))
    g.add_edges(src, dst)
    # edges are directional in DGL; make them bi-directional
    g.add_edges(dst, src)

    return g

###############################################################################
# We can print out the number of nodes and edges in our newly constructed graph:

G = build_karate_club_graph()
print('We have %d nodes.' % G.number_of_nodes())
print('We have %d edges.' % G.number_of_edges())

###############################################################################
# We can also visualize the graph by converting it to a `networkx
# <https://networkx.github.io/documentation/stable/>`_ graph:

import networkx as nx
# Since the actual graph is undirected, we convert it for visualization
# purpose.
nx_G = G.to_networkx().to_undirected()
# Kamada-Kawaii layout usually looks pretty for arbitrary graphs
pos = nx.kamada_kawai_layout(nx_G)
nx.draw(nx_G, pos, with_labels=True, node_color=[[.7, .7, .7]])

###############################################################################
# Step 2: assign features to nodes or edges
# --------------------------------------------
# Graph neural networks associate features with nodes and edges for training.
# For our classification example, we assign each node's an input feature as a one-hot vector:
# node :math:`v_i`'s feature vector is :math:`[0,\ldots,1,\dots,0]`,
# where the :math:`i^{th}` position is one.
#
# In DGL, we can add features for all nodes at once, using a feature tensor that
# batches node features along the first dimension. This code below adds the one-hot
# feature for all nodes:

import torch

G.ndata['feat'] = torch.eye(34)


###############################################################################
# We can print out the node features to verify:

# print out node 2's input feature
print(G.nodes[2].data['feat'])

# print out node 10 and 11's input features
print(G.nodes[[10, 11]].data['feat'])

###############################################################################
# Step 3: define a Graph Convolutional Network (GCN)
# --------------------------------------------------
# To perform node classification, we use the Graph Convolutional Network
# (GCN) developed by `Kipf and Welling <https://arxiv.org/abs/1609.02907>`_. Here
brett koonce's avatar
brett koonce committed
125
# we provide the simplest definition of a GCN framework, but we recommend the
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# reader to read the original paper for more details.
#
# - At layer :math:`l`, each node :math:`v_i^l` carries a feature vector :math:`h_i^l`.
# - Each layer of the GCN tries to aggregate the features from :math:`u_i^{l}` where
#   :math:`u_i`'s are neighborhood nodes to :math:`v` into the next layer representation at
#   :math:`v_i^{l+1}`. This is followed by an affine transformation with some
#   non-linearity.
#
# The above definition of GCN fits into a **message-passing** paradigm: each
# node will update its own feature with information sent from neighboring
# nodes. A graphical demonstration is displayed below.
#
# .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/mailbox.png
#    :alt: mailbox
#    :align: center
#
# Now, we show that the GCN layer can be easily implemented in DGL.

import torch.nn as nn
import torch.nn.functional as F

# Define the message & reduce function
# NOTE: we ignore the GCN's normalization constant c_ij for this tutorial.
def gcn_message(edges):
    # The argument is a batch of edges.
    # This computes a (batch of) message called 'msg' using the source node's feature 'h'.
    return {'msg' : edges.src['h']}

def gcn_reduce(nodes):
    # The argument is a batch of nodes.
    # This computes the new 'h' features by summing received 'msg' in each node's mailbox.
    return {'h' : torch.sum(nodes.mailbox['msg'], dim=1)}

# Define the GCNLayer module
class GCNLayer(nn.Module):
    def __init__(self, in_feats, out_feats):
        super(GCNLayer, self).__init__()
        self.linear = nn.Linear(in_feats, out_feats)

    def forward(self, g, inputs):
        # g is the graph and the inputs is the input node features
        # first set the node features
        g.ndata['h'] = inputs
        # trigger message passing on all edges 
        g.send(g.edges(), gcn_message)
        # trigger aggregation at all nodes
        g.recv(g.nodes(), gcn_reduce)
        # get the result node features
        h = g.ndata.pop('h')
        # perform linear transformation
        return self.linear(h)

###############################################################################
# In general, the nodes send information computed via the *message functions*,
# and aggregates incoming information with the *reduce functions*.
#
# We then define a deeper GCN model that contains two GCN layers:

# Define a 2-layer GCN model
class GCN(nn.Module):
    def __init__(self, in_feats, hidden_size, num_classes):
        super(GCN, self).__init__()
        self.gcn1 = GCNLayer(in_feats, hidden_size)
        self.gcn2 = GCNLayer(hidden_size, num_classes)

    def forward(self, g, inputs):
        h = self.gcn1(g, inputs)
        h = torch.relu(h)
        h = self.gcn2(g, h)
        return h
# The first layer transforms input features of size of 34 to a hidden size of 5.
# The second layer transforms the hidden layer and produces output features of
# size 2, corresponding to the two groups of the karate club.
net = GCN(34, 5, 2)

###############################################################################
# Step 4: data preparation and initialization
# -------------------------------------------
#
# We use one-hot vectors to initialize the node features. Since this is a
# semi-supervised setting, only the instructor (node 0) and the club president
# (node 33) are assigned labels. The implementation is available as follow.

inputs = torch.eye(34)
labeled_nodes = torch.tensor([0, 33])  # only the instructor and the president nodes are labeled
labels = torch.tensor([0, 1])  # their labels are different

###############################################################################
# Step 5: train then visualize
# ----------------------------
# The training loop is exactly the same as other PyTorch models.
# We (1) create an optimizer, (2) feed the inputs to the model,
# (3) calculate the loss and (4) use autograd to optimize the model.

optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
all_logits = []
for epoch in range(30):
    logits = net(G, inputs)
    # we save the logits for visualization later
    all_logits.append(logits.detach())
    logp = F.log_softmax(logits, 1)
    # we only compute loss for labeled nodes
    loss = F.nll_loss(logp[labeled_nodes], labels)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    print('Epoch %d | Loss: %.4f' % (epoch, loss.item()))

###############################################################################
# This is a rather toy example, so it does not even have a validation or test
# set. Instead, Since the model produces an output feature of size 2 for each node, we can
# visualize by plotting the output feature in a 2D space.
# The following code animates the training process from initial guess
# (where the nodes are not classified correctly at all) to the end
# (where the nodes are linearly separable).

import matplotlib.animation as animation
import matplotlib.pyplot as plt

def draw(i):
    cls1color = '#00FFFF'
    cls2color = '#FF00FF'
    pos = {}
    colors = []
    for v in range(34):
        pos[v] = all_logits[i][v].numpy()
        cls = pos[v].argmax()
        colors.append(cls1color if cls else cls2color)
    ax.cla()
    ax.axis('off')
    ax.set_title('Epoch: %d' % i)
    nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors,
            with_labels=True, node_size=300, ax=ax)

fig = plt.figure(dpi=150)
fig.clf()
ax = fig.subplots()
draw(0)  # draw the prediction of the first epoch
plt.close()

###############################################################################
# .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/karate0.png
#    :height: 300px
#    :width: 400px
#    :align: center

###############################################################################
# The following animation shows how the model correctly predicts the community
# after a series of training epochs.

ani = animation.FuncAnimation(fig, draw, frames=len(all_logits), interval=200)

###############################################################################
# .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/karate.gif
#    :height: 300px
#    :width: 400px
#    :align: center

###############################################################################
# Next steps
# ----------
# 
# In the :doc:`next tutorial <2_basics>`, we will go through some more basics
# of DGL, such as reading and writing node/edge features.