""" .. currentmodule:: dgl DGL at a Glance ========================= **Author**: `Minjie Wang `_, Quan Gan, `Jake Zhao `_, Zheng Zhang DGL is a Python package dedicated to deep learning on graphs, built atop existing tensor DL frameworks (e.g. Pytorch, MXNet) and simplifying the implementation of graph-based neural networks. The goal of this tutorial: - Understand how DGL enables computation on graph from a high level. - Train a simple graph neural network in DGL to classify nodes in a graph. At the end of this tutorial, we hope you get a brief feeling of how DGL works. *This tutorial assumes basic familiarity with pytorch.* """ ############################################################################### # Step 0: Problem description # --------------------------- # # We start with the well-known "Zachary's karate club" problem. The karate club # is a social network which captures 34 members and document pairwise links # between members who interact outside the club. The club later divides into # two communities led by the instructor (node 0) and the club president (node # 33). The network is visualized as follows with the color indicating the # community: # # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/img/karate-club.png # :align: center # # The task is to predict which side (0 or 33) each member tends to join given # the social network itself. ############################################################################### # Step 1: Creating a graph in DGL # ------------------------------- # Creating the graph for Zachary's karate club goes as follows: import dgl def build_karate_club_graph(): g = dgl.DGLGraph() # add 34 nodes into the graph; nodes are labeled from 0~33 g.add_nodes(34) # all 78 edges as a list of tuples edge_list = [(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (5, 0), (6, 0), (6, 4), (6, 5), (7, 0), (7, 1), (7, 2), (7, 3), (8, 0), (8, 2), (9, 2), (10, 0), (10, 4), (10, 5), (11, 0), (12, 0), (12, 3), (13, 0), (13, 1), (13, 2), (13, 3), (16, 5), (16, 6), (17, 0), (17, 1), (19, 0), (19, 1), (21, 0), (21, 1), (25, 23), (25, 24), (27, 2), (27, 23), (27, 24), (28, 2), (29, 23), (29, 26), (30, 1), (30, 8), (31, 0), (31, 24), (31, 25), (31, 28), (32, 2), (32, 8), (32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23), (32, 29), (32, 30), (32, 31), (33, 8), (33, 9), (33, 13), (33, 14), (33, 15), (33, 18), (33, 19), (33, 20), (33, 22), (33, 23), (33, 26), (33, 27), (33, 28), (33, 29), (33, 30), (33, 31), (33, 32)] # add edges two lists of nodes: src and dst src, dst = tuple(zip(*edge_list)) g.add_edges(src, dst) # edges are directional in DGL; make them bi-directional g.add_edges(dst, src) return g ############################################################################### # We can print out the number of nodes and edges in our newly constructed graph: G = build_karate_club_graph() print('We have %d nodes.' % G.number_of_nodes()) print('We have %d edges.' % G.number_of_edges()) ############################################################################### # We can also visualize the graph by converting it to a `networkx # `_ graph: import networkx as nx # Since the actual graph is undirected, we convert it for visualization # purpose. nx_G = G.to_networkx().to_undirected() # Kamada-Kawaii layout usually looks pretty for arbitrary graphs pos = nx.kamada_kawai_layout(nx_G) nx.draw(nx_G, pos, with_labels=True, node_color=[[.7, .7, .7]]) ############################################################################### # Step 2: assign features to nodes or edges # -------------------------------------------- # Graph neural networks associate features with nodes and edges for training. # For our classification example, we assign each node's an input feature as a one-hot vector: # node :math:`v_i`'s feature vector is :math:`[0,\ldots,1,\dots,0]`, # where the :math:`i^{th}` position is one. # # In DGL, we can add features for all nodes at once, using a feature tensor that # batches node features along the first dimension. This code below adds the one-hot # feature for all nodes: import torch G.ndata['feat'] = torch.eye(34) ############################################################################### # We can print out the node features to verify: # print out node 2's input feature print(G.nodes[2].data['feat']) # print out node 10 and 11's input features print(G.nodes[[10, 11]].data['feat']) ############################################################################### # Step 3: define a Graph Convolutional Network (GCN) # -------------------------------------------------- # To perform node classification, we use the Graph Convolutional Network # (GCN) developed by `Kipf and Welling `_. Here # we provide the simplest definition of a GCN framework, but we recommend the # reader to read the original paper for more details. # # - At layer :math:`l`, each node :math:`v_i^l` carries a feature vector :math:`h_i^l`. # - Each layer of the GCN tries to aggregate the features from :math:`u_i^{l}` where # :math:`u_i`'s are neighborhood nodes to :math:`v` into the next layer representation at # :math:`v_i^{l+1}`. This is followed by an affine transformation with some # non-linearity. # # The above definition of GCN fits into a **message-passing** paradigm: each # node will update its own feature with information sent from neighboring # nodes. A graphical demonstration is displayed below. # # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/mailbox.png # :alt: mailbox # :align: center # # Now, we show that the GCN layer can be easily implemented in DGL. import torch.nn as nn import torch.nn.functional as F # Define the message & reduce function # NOTE: we ignore the GCN's normalization constant c_ij for this tutorial. def gcn_message(edges): # The argument is a batch of edges. # This computes a (batch of) message called 'msg' using the source node's feature 'h'. return {'msg' : edges.src['h']} def gcn_reduce(nodes): # The argument is a batch of nodes. # This computes the new 'h' features by summing received 'msg' in each node's mailbox. return {'h' : torch.sum(nodes.mailbox['msg'], dim=1)} # Define the GCNLayer module class GCNLayer(nn.Module): def __init__(self, in_feats, out_feats): super(GCNLayer, self).__init__() self.linear = nn.Linear(in_feats, out_feats) def forward(self, g, inputs): # g is the graph and the inputs is the input node features # first set the node features g.ndata['h'] = inputs # trigger message passing on all edges g.send(g.edges(), gcn_message) # trigger aggregation at all nodes g.recv(g.nodes(), gcn_reduce) # get the result node features h = g.ndata.pop('h') # perform linear transformation return self.linear(h) ############################################################################### # In general, the nodes send information computed via the *message functions*, # and aggregates incoming information with the *reduce functions*. # # We then define a deeper GCN model that contains two GCN layers: # Define a 2-layer GCN model class GCN(nn.Module): def __init__(self, in_feats, hidden_size, num_classes): super(GCN, self).__init__() self.gcn1 = GCNLayer(in_feats, hidden_size) self.gcn2 = GCNLayer(hidden_size, num_classes) def forward(self, g, inputs): h = self.gcn1(g, inputs) h = torch.relu(h) h = self.gcn2(g, h) return h # The first layer transforms input features of size of 34 to a hidden size of 5. # The second layer transforms the hidden layer and produces output features of # size 2, corresponding to the two groups of the karate club. net = GCN(34, 5, 2) ############################################################################### # Step 4: data preparation and initialization # ------------------------------------------- # # We use one-hot vectors to initialize the node features. Since this is a # semi-supervised setting, only the instructor (node 0) and the club president # (node 33) are assigned labels. The implementation is available as follow. inputs = torch.eye(34) labeled_nodes = torch.tensor([0, 33]) # only the instructor and the president nodes are labeled labels = torch.tensor([0, 1]) # their labels are different ############################################################################### # Step 5: train then visualize # ---------------------------- # The training loop is exactly the same as other PyTorch models. # We (1) create an optimizer, (2) feed the inputs to the model, # (3) calculate the loss and (4) use autograd to optimize the model. optimizer = torch.optim.Adam(net.parameters(), lr=0.01) all_logits = [] for epoch in range(30): logits = net(G, inputs) # we save the logits for visualization later all_logits.append(logits.detach()) logp = F.log_softmax(logits, 1) # we only compute loss for labeled nodes loss = F.nll_loss(logp[labeled_nodes], labels) optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch %d | Loss: %.4f' % (epoch, loss.item())) ############################################################################### # This is a rather toy example, so it does not even have a validation or test # set. Instead, Since the model produces an output feature of size 2 for each node, we can # visualize by plotting the output feature in a 2D space. # The following code animates the training process from initial guess # (where the nodes are not classified correctly at all) to the end # (where the nodes are linearly separable). import matplotlib.animation as animation import matplotlib.pyplot as plt def draw(i): cls1color = '#00FFFF' cls2color = '#FF00FF' pos = {} colors = [] for v in range(34): pos[v] = all_logits[i][v].numpy() cls = pos[v].argmax() colors.append(cls1color if cls else cls2color) ax.cla() ax.axis('off') ax.set_title('Epoch: %d' % i) nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors, with_labels=True, node_size=300, ax=ax) fig = plt.figure(dpi=150) fig.clf() ax = fig.subplots() draw(0) # draw the prediction of the first epoch plt.close() ############################################################################### # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/karate0.png # :height: 300px # :width: 400px # :align: center ############################################################################### # The following animation shows how the model correctly predicts the community # after a series of training epochs. ani = animation.FuncAnimation(fig, draw, frames=len(all_logits), interval=200) ############################################################################### # .. image:: https://s3.us-east-2.amazonaws.com/dgl.ai/tutorial/1_first/karate.gif # :height: 300px # :width: 400px # :align: center ############################################################################### # Next steps # ---------- # # In the :doc:`next tutorial <2_basics>`, we will go through some more basics # of DGL, such as reading and writing node/edge features.