sgc.py 2.56 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
3
4
5
"""
[Simplifying Graph Convolutional Networks]
(https://arxiv.org/abs/1902.07153)
"""

6
import dgl.sparse as dglsp
Mufei Li's avatar
Mufei Li committed
7
8
9
10
11
12
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import CoraGraphDataset
from torch.optim import Adam

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
13

Mufei Li's avatar
Mufei Li committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
################################################################################
# (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement the feature
# pre-computation.
################################################################################
def pre_compute(A, X, k):
    for _ in range(k):
        X = A @ X
    return X


def evaluate(g, pred):
    label = g.ndata["label"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]

    # Compute accuracy on validation/test set.
    val_acc = (pred[val_mask] == label[val_mask]).float().mean()
    test_acc = (pred[test_mask] == label[test_mask]).float().mean()
    return val_acc, test_acc


Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
35
def train(model, g, X_sgc):
Mufei Li's avatar
Mufei Li committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    label = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    optimizer = Adam(model.parameters(), lr=2e-1, weight_decay=5e-6)

    for epoch in range(20):
        # Forward.
        logits = model(X_sgc)

        # Compute loss with nodes in the training set.
        loss = F.cross_entropy(logits[train_mask], label[train_mask])

        # Backward.
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Compute prediction.
        pred = logits.argmax(dim=1)

        # Evaluate the prediction.
        val_acc, test_acc = evaluate(g, pred)
        print(
            f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test"
            f" acc: {test_acc:.3f}"
        )


if __name__ == "__main__":
    # If CUDA is available, use GPU to accelerate the training, use CPU
    # otherwise.
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # Load graph from the existing dataset.
    dataset = CoraGraphDataset()
    g = dataset[0].to(dev)

    # Create the sparse adjacency matrix A
73
    indices = torch.stack(g.edges())
Mufei Li's avatar
Mufei Li committed
74
    N = g.num_nodes()
75
    A = dglsp.spmatrix(indices, shape=(N, N))
Mufei Li's avatar
Mufei Li committed
76
77

    # Calculate the symmetrically normalized adjacency matrix.
78
    I = dglsp.identity(A.shape, device=dev)
Mufei Li's avatar
Mufei Li committed
79
    A_hat = A + I
80
    D_hat = dglsp.diag(A_hat.sum(dim=1)) ** -0.5
Mufei Li's avatar
Mufei Li committed
81
82
83
84
85
86
87
88
89
90
91
92
93
    A_hat = D_hat @ A_hat @ D_hat

    # 2-hop diffusion.
    k = 2
    X = g.ndata["feat"]
    X_sgc = pre_compute(A_hat, X, k)

    # Create model.
    in_size = X.shape[1]
    out_size = dataset.num_classes
    model = nn.Linear(in_size, out_size).to(dev)

    # Kick off training.
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
94
    train(model, g, X_sgc)