sgc.py 2.57 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
"""
[Simplifying Graph Convolutional Networks]
(https://arxiv.org/abs/1902.07153)
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import CoraGraphDataset
from dgl.mock_sparse import create_from_coo, diag, identity
from torch.optim import Adam


################################################################################
# (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement the feature
# pre-computation.
################################################################################
def pre_compute(A, X, k):
    for _ in range(k):
        X = A @ X
    return X


def evaluate(g, pred):
    label = g.ndata["label"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]

    # Compute accuracy on validation/test set.
    val_acc = (pred[val_mask] == label[val_mask]).float().mean()
    test_acc = (pred[test_mask] == label[test_mask]).float().mean()
    return val_acc, test_acc


Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
35
def train(model, g, X_sgc):
Mufei Li's avatar
Mufei Li committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    label = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    optimizer = Adam(model.parameters(), lr=2e-1, weight_decay=5e-6)

    for epoch in range(20):
        # Forward.
        logits = model(X_sgc)

        # Compute loss with nodes in the training set.
        loss = F.cross_entropy(logits[train_mask], label[train_mask])

        # Backward.
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Compute prediction.
        pred = logits.argmax(dim=1)

        # Evaluate the prediction.
        val_acc, test_acc = evaluate(g, pred)
        print(
            f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test"
            f" acc: {test_acc:.3f}"
        )


if __name__ == "__main__":
    # If CUDA is available, use GPU to accelerate the training, use CPU
    # otherwise.
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # Load graph from the existing dataset.
    dataset = CoraGraphDataset()
    g = dataset[0].to(dev)

    # Create the sparse adjacency matrix A
    src, dst = g.edges()
    N = g.num_nodes()
    A = create_from_coo(dst, src, shape=(N, N))

    # Calculate the symmetrically normalized adjacency matrix.
    I = identity(A.shape, device=dev)
    A_hat = A + I
    D_hat = diag(A_hat.sum(dim=1)) ** -0.5
    A_hat = D_hat @ A_hat @ D_hat

    # 2-hop diffusion.
    k = 2
    X = g.ndata["feat"]
    X_sgc = pre_compute(A_hat, X, k)

    # Create model.
    in_size = X.shape[1]
    out_size = dataset.num_classes
    model = nn.Linear(in_size, out_size).to(dev)

    # Kick off training.
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
94
    train(model, g, X_sgc)