"src/diffusers/pipelines/pipeline_flax_utils.py" did not exist on "8d9c4a531ba48d19b96d7bf38786b560f32298df"
train_cv_multi_gpu.py 14.7 KB
Newer Older
1
2
3
4
5
import argparse
import math
import time
import traceback

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
6
7
8
9
import dgl
import dgl.function as fn
import dgl.nn.pytorch as dglnn

10
11
import numpy as np
import torch as th
12
import torch.multiprocessing as mp
13
14
15
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
16
import tqdm
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
17
from dgl.data import RedditDataset
18
19
20
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader

21
22
23
24
25
26
27
28
29

class SAGEConvWithCV(nn.Module):
    def __init__(self, in_feats, out_feats, activation):
        super().__init__()
        self.W = nn.Linear(in_feats * 2, out_feats)
        self.activation = activation
        self.reset_parameters()

    def reset_parameters(self):
30
        gain = nn.init.calculate_gain("relu")
31
32
33
34
35
36
37
38
        nn.init.xavier_uniform_(self.W.weight, gain=gain)
        nn.init.constant_(self.W.bias, 0)

    def forward(self, block, H, HBar=None):
        if self.training:
            with block.local_scope():
                H_src, H_dst = H
                HBar_src, agg_HBar_dst = HBar
39
40
41
42
43
44
45
46
                block.dstdata["agg_hbar"] = agg_HBar_dst
                block.srcdata["hdelta"] = H_src - HBar_src
                block.update_all(
                    fn.copy_u("hdelta", "m"), fn.mean("m", "hdelta_new")
                )
                h_neigh = (
                    block.dstdata["agg_hbar"] + block.dstdata["hdelta_new"]
                )
47
48
49
50
51
52
53
                h = self.W(th.cat([H_dst, h_neigh], 1))
                if self.activation is not None:
                    h = self.activation(h)
                return h
        else:
            with block.local_scope():
                H_src, H_dst = H
54
55
56
                block.srcdata["h"] = H_src
                block.update_all(fn.copy_u("h", "m"), fn.mean("m", "h_new"))
                h_neigh = block.dstdata["h_new"]
57
58
59
60
61
                h = self.W(th.cat([H_dst, h_neigh], 1))
                if self.activation is not None:
                    h = self.activation(h)
                return h

62

63
class SAGE(nn.Module):
64
    def __init__(self, in_feats, n_hidden, n_classes, n_layers, activation):
65
66
67
68
69
70
71
72
73
74
75
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        self.layers.append(SAGEConvWithCV(in_feats, n_hidden, activation))
        for i in range(1, n_layers - 1):
            self.layers.append(SAGEConvWithCV(n_hidden, n_hidden, activation))
        self.layers.append(SAGEConvWithCV(n_hidden, n_classes, None))

    def forward(self, blocks):
76
        h = blocks[0].srcdata["features"]
77
78
79
80
81
82
        updates = []
        for layer, block in zip(self.layers, blocks):
            # We need to first copy the representation of nodes on the RHS from the
            # appropriate nodes on the LHS.
            # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst
            # would be (num_nodes_RHS, D)
83
84
85
            h_dst = h[: block.number_of_dst_nodes()]
            hbar_src = block.srcdata["hist"]
            agg_hbar_dst = block.dstdata["agg_hist"]
86
87
88
            # Then we compute the updated representation on the RHS.
            # The shape of h now becomes (num_nodes_RHS, D)
            h = layer(block, (h, h_dst), (hbar_src, agg_hbar_dst))
89
            block.dstdata["h_new"] = h
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = th.arange(g.number_of_nodes())
        for l, layer in enumerate(self.layers):
108
            y = g.ndata["hist_%d" % (l + 1)]
109

110
            for start in tqdm.trange(0, len(nodes), batch_size):
111
112
                end = start + batch_size
                batch_nodes = nodes[start:end]
113
114
115
                block = dgl.to_block(
                    dgl.in_subgraph(g, batch_nodes), batch_nodes
                )
116
117
118
                induced_nodes = block.srcdata[dgl.NID]

                h = x[induced_nodes].to(device)
119
                block = block.to(device)
120
                h_dst = h[: block.number_of_dst_nodes()]
121
122
123
124
125
                h = layer(block, (h, h_dst))

                y[start:end] = h.cpu()

            x = y
126
        return y
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152


class NeighborSampler(object):
    def __init__(self, g, fanouts):
        self.g = g
        self.fanouts = fanouts

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(seeds)
        blocks = []
        hist_blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = dgl.sampling.sample_neighbors(self.g, seeds, fanout)
            # For history aggregation we sample all neighbors.
            hist_frontier = dgl.in_subgraph(self.g, seeds)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            hist_block = dgl.to_block(hist_frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
            hist_blocks.insert(0, hist_block)
        return blocks, hist_blocks

153

154
155
156
157
158
159
def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

160

161
162
163
164
165
166
167
168
169
170
171
172
def evaluate(model, g, labels, val_mask, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_mask``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
173
174
175
176
        inputs = g.ndata["features"]
        pred = model.inference(
            g, inputs, batch_size, device
        )  # also recomputes history tensors
177
178
179
    model.train()
    return compute_acc(pred[val_mask], labels[val_mask])

180
181
182
183

def load_subtensor(
    g, labels, blocks, hist_blocks, dev_id, aggregation_on_device=False
):
184
185
186
    """
    Copys features and labels of a set of nodes onto GPU.
    """
187
188
189
190
    blocks[0].srcdata["features"] = g.ndata["features"][
        blocks[0].srcdata[dgl.NID]
    ]
    blocks[-1].dstdata["label"] = labels[blocks[-1].dstdata[dgl.NID]]
191
192
    ret_blocks = []
    ret_hist_blocks = []
193
    for i, (block, hist_block) in enumerate(zip(blocks, hist_blocks)):
194
195
        hist_col = "features" if i == 0 else "hist_%d" % i
        block.srcdata["hist"] = g.ndata[hist_col][block.srcdata[dgl.NID]]
196
197

        # Aggregate history
198
199
200
        hist_block.srcdata["hist"] = g.ndata[hist_col][
            hist_block.srcdata[dgl.NID]
        ]
201
        if aggregation_on_device:
202
            hist_block = hist_block.to(dev_id)
203
204
            hist_block.srcdata["hist"] = hist_block.srcdata["hist"]
        hist_block.update_all(fn.copy_u("hist", "m"), fn.mean("m", "agg_hist"))
205
206

        block = block.to(dev_id)
207
        if not aggregation_on_device:
208
            hist_block = hist_block.to(dev_id)
209
        block.dstdata["agg_hist"] = hist_block.dstdata["agg_hist"]
210
211
212
        ret_blocks.append(block)
        ret_hist_blocks.append(hist_block)
    return ret_blocks, ret_hist_blocks
213

214

215
216
217
218
def create_history_storage(g, args, n_classes):
    # Initialize history storage
    for l in range(args.num_layers):
        dim = args.num_hidden if l != args.num_layers - 1 else n_classes
219
220
221
222
        g.ndata["hist_%d" % (l + 1)] = th.zeros(
            g.number_of_nodes(), dim
        ).share_memory_()

223
224

def init_history(g, model, dev_id, batch_size):
225
    with th.no_grad():
226
227
228
229
        model.inference(
            g, g.ndata["features"], batch_size, dev_id
        )  # replaces hist_i features in-place

230
231
232
233

def update_history(g, blocks):
    with th.no_grad():
        for i, block in enumerate(blocks):
234
            ids = block.dstdata[dgl.NID].cpu()
235
            hist_col = "hist_%d" % (i + 1)
236

237
            h_new = block.dstdata["h_new"].cpu()
238
239
            g.ndata[hist_col][ids] = h_new

240

241
242
243
244
245
def run(proc_id, n_gpus, args, devices, data):
    dropout = 0.2

    dev_id = devices[proc_id]
    if n_gpus > 1:
246
247
248
        dist_init_method = "tcp://{master_ip}:{master_port}".format(
            master_ip="127.0.0.1", master_port="12345"
        )
249
        world_size = n_gpus
250
251
252
253
254
255
        th.distributed.init_process_group(
            backend="nccl",
            init_method=dist_init_method,
            world_size=world_size,
            rank=proc_id,
        )
256
257
258
259
    th.cuda.set_device(dev_id)

    # Unpack data
    train_mask, val_mask, in_feats, labels, n_classes, g = data
260
261
    train_nid = train_mask.nonzero().squeeze()
    val_nid = val_mask.nonzero().squeeze()
262
263

    # Create sampler
264
    sampler = NeighborSampler(g, [int(_) for _ in args.fan_out.split(",")])
265
266

    # Create PyTorch DataLoader for constructing blocks
267
    if n_gpus > 1:
268
269
270
        dist_sampler = th.utils.data.distributed.DistributedSampler(
            train_nid.numpy(), shuffle=True, drop_last=False
        )
271
272
273
274
275
        dataloader = DataLoader(
            dataset=train_nid.numpy(),
            batch_size=args.batch_size,
            collate_fn=sampler.sample_blocks,
            sampler=dist_sampler,
276
277
            num_workers=args.num_workers_per_gpu,
        )
278
279
280
281
282
283
284
    else:
        dataloader = DataLoader(
            dataset=train_nid.numpy(),
            batch_size=args.batch_size,
            collate_fn=sampler.sample_blocks,
            shuffle=True,
            drop_last=False,
285
286
            num_workers=args.num_workers_per_gpu,
        )
287
288
289
290
291
292
293

    # Define model
    model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu)

    # Move the model to GPU and define optimizer
    model = model.to(dev_id)
    if n_gpus > 1:
294
295
296
        model = DistributedDataParallel(
            model, device_ids=[dev_id], output_device=dev_id
        )
297
298
299
300
301
302
303
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(dev_id)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Compute history tensor and their aggregation before training on CPU
    model.eval()
    if n_gpus > 1:
304
305
        if proc_id == 0:
            init_history(g, model.module, dev_id, args.val_batch_size)
306
307
        th.distributed.barrier()
    else:
308
        init_history(g, model, dev_id, args.val_batch_size)
309
310
311
312
313
314
    model.train()

    # Training loop
    avg = 0
    iter_tput = []
    for epoch in range(args.num_epochs):
315
316
        if n_gpus > 1:
            dist_sampler.set_epoch(epoch)
317
318
319
320
321
322
323
324
325
326
        tic = time.time()
        model.train()
        for step, (blocks, hist_blocks) in enumerate(dataloader):
            if proc_id == 0:
                tic_step = time.time()

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            seeds = blocks[-1].dstdata[dgl.NID]

327
328
329
            blocks, hist_blocks = load_subtensor(
                g, labels, blocks, hist_blocks, dev_id, True
            )
330
331
332
333
334
335

            # forward
            batch_pred = model(blocks)
            # update history
            update_history(g, blocks)
            # compute loss
336
            batch_labels = blocks[-1].dstdata["label"]
337
338
339
340
341
342
343
344
345
            loss = loss_fcn(batch_pred, batch_labels)
            # backward
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if proc_id == 0:
                iter_tput.append(len(seeds) * n_gpus / (time.time() - tic_step))
            if step % args.log_every == 0 and proc_id == 0:
                acc = compute_acc(batch_pred, batch_labels)
346
347
348
349
350
351
352
353
354
                print(
                    "Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f}".format(
                        epoch,
                        step,
                        loss.item(),
                        acc.item(),
                        np.mean(iter_tput[3:]),
                    )
                )
355
356
357
358
359
360

        if n_gpus > 1:
            th.distributed.barrier()

        toc = time.time()
        if proc_id == 0:
361
            print("Epoch Time(s): {:.4f}".format(toc - tic))
362
363
364
365
366
            if epoch >= 5:
                avg += toc - tic
            if epoch % args.eval_every == 0 and epoch != 0:
                model.eval()
                eval_acc = evaluate(
367
368
369
370
371
372
373
374
                    model if n_gpus == 1 else model.module,
                    g,
                    labels,
                    val_nid,
                    args.val_batch_size,
                    dev_id,
                )
                print("Eval Acc {:.4f}".format(eval_acc))
375
376
377
378

    if n_gpus > 1:
        th.distributed.barrier()
    if proc_id == 0:
379
        print("Avg epoch time: {}".format(avg / (epoch - 4)))
380

381
382

if __name__ == "__main__":
383
    argparser = argparse.ArgumentParser("multi-gpu training")
384
385
386
387
388
389
390
391
392
393
394
    argparser.add_argument("--gpu", type=str, default="0")
    argparser.add_argument("--num-epochs", type=int, default=20)
    argparser.add_argument("--num-hidden", type=int, default=16)
    argparser.add_argument("--num-layers", type=int, default=2)
    argparser.add_argument("--fan-out", type=str, default="1,1")
    argparser.add_argument("--batch-size", type=int, default=1000)
    argparser.add_argument("--val-batch-size", type=int, default=1000)
    argparser.add_argument("--log-every", type=int, default=20)
    argparser.add_argument("--eval-every", type=int, default=5)
    argparser.add_argument("--lr", type=float, default=0.003)
    argparser.add_argument("--num-workers-per-gpu", type=int, default=0)
395
    args = argparser.parse_args()
396
397

    devices = list(map(int, args.gpu.split(",")))
398
399
400
401
    n_gpus = len(devices)

    # load reddit data
    data = RedditDataset(self_loop=True)
Xiangkun Hu's avatar
Xiangkun Hu committed
402
403
    n_classes = data.num_classes
    g = data[0]
404
    features = g.ndata["feat"]
405
    in_feats = features.shape[1]
406
407
408
409
    labels = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    val_mask = g.ndata["val_mask"]
    g.ndata["features"] = features.share_memory_()
410
411
    create_history_storage(g, args, n_classes)

412
413
    # Create csr/coo/csc formats before launching training processes with multi-gpu.
    # This avoids creating certain formats in each sub-process, which saves momory and CPU.
414
    g.create_formats_()
415
416
417
418
419
420
    # Pack data
    data = train_mask, val_mask, in_feats, labels, n_classes, g

    if n_gpus == 1:
        run(0, n_gpus, args, devices, data)
    else:
421
        mp.spawn(run, args=(n_gpus, args, devices, data), nprocs=n_gpus)