main.py 6.38 KB
Newer Older
Smile's avatar
Smile committed
1
import time
2

Smile's avatar
Smile committed
3
4
import numpy as np
import torch
5
import torch.multiprocessing
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
6
7
8

from dgl import EID, NID
from dgl.dataloading import GraphDataLoader
9
10
11
from logger import LightLogging
from model import DGCNN, GCN
from sampler import SEALData
Smile's avatar
Smile committed
12
from torch.nn import BCEWithLogitsLoss
13
14
15
16
17
18
from tqdm import tqdm
from utils import evaluate_hits, load_ogb_dataset, parse_arguments

torch.multiprocessing.set_sharing_strategy("file_system")

"""
Smile's avatar
Smile committed
19
20
Part of the code are adapted from
https://github.com/facebookresearch/SEAL_OGB
21
22
23
24
25
26
27
28
29
30
31
32
"""


def train(
    model,
    dataloader,
    loss_fn,
    optimizer,
    device,
    num_graphs=32,
    total_graphs=None,
):
Smile's avatar
Smile committed
33
34
35
36
37
38
39
    model.train()

    total_loss = 0
    for g, labels in tqdm(dataloader, ncols=100):
        g = g.to(device)
        labels = labels.to(device)
        optimizer.zero_grad()
40
        logits = model(g, g.ndata["z"], g.ndata[NID], g.edata[EID])
Smile's avatar
Smile committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        loss = loss_fn(logits, labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item() * num_graphs

    return total_loss / total_graphs


@torch.no_grad()
def evaluate(model, dataloader, device):
    model.eval()

    y_pred, y_true = [], []
    for g, labels in tqdm(dataloader, ncols=100):
        g = g.to(device)
56
        logits = model(g, g.ndata["z"], g.ndata[NID], g.edata[EID])
Smile's avatar
Smile committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        y_pred.append(logits.view(-1).cpu())
        y_true.append(labels.view(-1).cpu().to(torch.float))

    y_pred, y_true = torch.cat(y_pred), torch.cat(y_true)
    pos_pred = y_pred[y_true == 1]
    neg_pred = y_pred[y_true == 0]

    return pos_pred, neg_pred


def main(args, print_fn=print):
    print_fn("Experiment arguments: {}".format(args))

    if args.random_seed:
        torch.manual_seed(args.random_seed)
    else:
        torch.manual_seed(123)
    # Load dataset
75
    if args.dataset.startswith("ogbl"):
Smile's avatar
Smile committed
76
77
78
79
80
81
82
83
        graph, split_edge = load_ogb_dataset(args.dataset)
    else:
        raise NotImplementedError

    num_nodes = graph.num_nodes()

    # set gpu
    if args.gpu_id >= 0 and torch.cuda.is_available():
84
        device = "cuda:{}".format(args.gpu_id)
Smile's avatar
Smile committed
85
    else:
86
        device = "cpu"
Smile's avatar
Smile committed
87

88
    if args.dataset == "ogbl-collab":
Smile's avatar
Smile committed
89
90
91
92
93
94
95
        # ogbl-collab dataset is multi-edge graph
        use_coalesce = True
    else:
        use_coalesce = False

    # Generate positive and negative edges and corresponding labels
    # Sampling subgraphs and generate node labeling features
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    seal_data = SEALData(
        g=graph,
        split_edge=split_edge,
        hop=args.hop,
        neg_samples=args.neg_samples,
        subsample_ratio=args.subsample_ratio,
        use_coalesce=use_coalesce,
        prefix=args.dataset,
        save_dir=args.save_dir,
        num_workers=args.num_workers,
        print_fn=print_fn,
    )
    node_attribute = seal_data.ndata["feat"]
    edge_weight = seal_data.edata["weight"].float()

    train_data = seal_data("train")
    val_data = seal_data("valid")
    test_data = seal_data("test")
Smile's avatar
Smile committed
114
115
116
117
118

    train_graphs = len(train_data.graph_list)

    # Set data loader

119
120
121
122
123
124
125
126
127
    train_loader = GraphDataLoader(
        train_data, batch_size=args.batch_size, num_workers=args.num_workers
    )
    val_loader = GraphDataLoader(
        val_data, batch_size=args.batch_size, num_workers=args.num_workers
    )
    test_loader = GraphDataLoader(
        test_data, batch_size=args.batch_size, num_workers=args.num_workers
    )
Smile's avatar
Smile committed
128
129

    # set model
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    if args.model == "gcn":
        model = GCN(
            num_layers=args.num_layers,
            hidden_units=args.hidden_units,
            gcn_type=args.gcn_type,
            pooling_type=args.pooling,
            node_attributes=node_attribute,
            edge_weights=edge_weight,
            node_embedding=None,
            use_embedding=True,
            num_nodes=num_nodes,
            dropout=args.dropout,
        )
    elif args.model == "dgcnn":
        model = DGCNN(
            num_layers=args.num_layers,
            hidden_units=args.hidden_units,
            k=args.sort_k,
            gcn_type=args.gcn_type,
            node_attributes=node_attribute,
            edge_weights=edge_weight,
            node_embedding=None,
            use_embedding=True,
            num_nodes=num_nodes,
            dropout=args.dropout,
        )
Smile's avatar
Smile committed
156
    else:
157
        raise ValueError("Model error")
Smile's avatar
Smile committed
158
159
160
161
162

    model = model.to(device)
    parameters = model.parameters()
    optimizer = torch.optim.Adam(parameters, lr=args.lr)
    loss_fn = BCEWithLogitsLoss()
163
164
165
166
167
    print_fn(
        "Total parameters: {}".format(
            sum([p.numel() for p in model.parameters()])
        )
    )
Smile's avatar
Smile committed
168
169
170
171
172
173

    # train and evaluate loop
    summary_val = []
    summary_test = []
    for epoch in range(args.epochs):
        start_time = time.time()
174
175
176
177
178
179
180
181
182
        loss = train(
            model=model,
            dataloader=train_loader,
            loss_fn=loss_fn,
            optimizer=optimizer,
            device=device,
            num_graphs=args.batch_size,
            total_graphs=train_graphs,
        )
Smile's avatar
Smile committed
183
184
        train_time = time.time()
        if epoch % args.eval_steps == 0:
185
186
187
188
189
190
191
192
193
194
195
196
197
            val_pos_pred, val_neg_pred = evaluate(
                model=model, dataloader=val_loader, device=device
            )
            test_pos_pred, test_neg_pred = evaluate(
                model=model, dataloader=test_loader, device=device
            )

            val_metric = evaluate_hits(
                args.dataset, val_pos_pred, val_neg_pred, args.hits_k
            )
            test_metric = evaluate_hits(
                args.dataset, test_pos_pred, test_neg_pred, args.hits_k
            )
Smile's avatar
Smile committed
198
            evaluate_time = time.time()
199
200
201
202
203
204
205
206
207
208
209
210
            print_fn(
                "Epoch-{}, train loss: {:.4f}, hits@{}: val-{:.4f}, test-{:.4f}, "
                "cost time: train-{:.1f}s, total-{:.1f}s".format(
                    epoch,
                    loss,
                    args.hits_k,
                    val_metric,
                    test_metric,
                    train_time - start_time,
                    evaluate_time - start_time,
                )
            )
Smile's avatar
Smile committed
211
212
213
214
215
216
            summary_val.append(val_metric)
            summary_test.append(test_metric)

    summary_test = np.array(summary_test)

    print_fn("Experiment Results:")
217
218
219
220
221
    print_fn(
        "Best hits@{}: {:.4f}, epoch: {}".format(
            args.hits_k, np.max(summary_test), np.argmax(summary_test)
        )
    )
Smile's avatar
Smile committed
222
223


224
if __name__ == "__main__":
Smile's avatar
Smile committed
225
    args = parse_arguments()
226
    logger = LightLogging(log_name="SEAL", log_path="./logs")
Smile's avatar
Smile committed
227
    main(args, logger.info)