rrn.py 1.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
"""
Recurrent Relational Network(RRN) module

References:
- Recurrent Relational Networks
- Paper: https://arxiv.org/abs/1711.08028
- Original Code: https://github.com/rasmusbergpalm/recurrent-relational-networks
"""

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
10
import dgl.function as fn
11
12
import torch
from torch import nn
13

14
15
16
17
18
19
20
21
22
23

class RRNLayer(nn.Module):
    def __init__(self, msg_layer, node_update_func, edge_drop):
        super(RRNLayer, self).__init__()
        self.msg_layer = msg_layer
        self.node_update_func = node_update_func
        self.edge_dropout = nn.Dropout(edge_drop)

    def forward(self, g):
        g.apply_edges(self.get_msg)
24
25
26
27
        g.edata["e"] = self.edge_dropout(g.edata["e"])
        g.update_all(
            message_func=fn.copy_e("e", "msg"), reduce_func=fn.sum("msg", "m")
        )
28
29
30
        g.apply_nodes(self.node_update)

    def get_msg(self, edges):
31
        e = torch.cat([edges.src["h"], edges.dst["h"]], -1)
32
        e = self.msg_layer(e)
33
        return {"e": e}
34
35
36
37
38
39

    def node_update(self, nodes):
        return self.node_update_func(nodes)


class RRN(nn.Module):
40
    def __init__(self, msg_layer, node_update_func, num_steps, edge_drop):
41
42
43
44
45
46
47
48
49
        super(RRN, self).__init__()
        self.num_steps = num_steps
        self.rrn_layer = RRNLayer(msg_layer, node_update_func, edge_drop)

    def forward(self, g, get_all_outputs=True):
        outputs = []
        for _ in range(self.num_steps):
            self.rrn_layer(g)
            if get_all_outputs:
50
                outputs.append(g.ndata["h"])
51
52
53
        if get_all_outputs:
            outputs = torch.stack(outputs, 0)  # num_steps x n_nodes x h_dim
        else:
54
            outputs = g.ndata["h"]  # n_nodes x h_dim
55
        return outputs