rrn.py 1.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""
Recurrent Relational Network(RRN) module

References:
- Recurrent Relational Networks
- Paper: https://arxiv.org/abs/1711.08028
- Original Code: https://github.com/rasmusbergpalm/recurrent-relational-networks
"""

import torch
from torch import nn
import dgl.function as fn


class RRNLayer(nn.Module):
    def __init__(self, msg_layer, node_update_func, edge_drop):
        super(RRNLayer, self).__init__()
        self.msg_layer = msg_layer
        self.node_update_func = node_update_func
        self.edge_dropout = nn.Dropout(edge_drop)

    def forward(self, g):
        g.apply_edges(self.get_msg)
        g.edata['e'] = self.edge_dropout(g.edata['e'])
        g.update_all(message_func=fn.copy_e('e', 'msg'),
                     reduce_func=fn.sum('msg', 'm'))
        g.apply_nodes(self.node_update)

    def get_msg(self, edges):
        e = torch.cat([edges.src['h'], edges.dst['h']], -1)
        e = self.msg_layer(e)
        return {'e': e}

    def node_update(self, nodes):
        return self.node_update_func(nodes)


class RRN(nn.Module):
    def __init__(self,
                 msg_layer,
                 node_update_func,
                 num_steps,
                 edge_drop):
        super(RRN, self).__init__()
        self.num_steps = num_steps
        self.rrn_layer = RRNLayer(msg_layer, node_update_func, edge_drop)

    def forward(self, g, get_all_outputs=True):
        outputs = []
        for _ in range(self.num_steps):
            self.rrn_layer(g)
            if get_all_outputs:
                outputs.append(g.ndata['h'])
        if get_all_outputs:
            outputs = torch.stack(outputs, 0)  # num_steps x n_nodes x h_dim
        else:
            outputs = g.ndata['h']  # n_nodes x h_dim
        return outputs