networks.py 14.4 KB
Newer Older
1
2
3
from typing import List, Tuple, Union

from layers import *
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
4
import dgl.function as fn
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import torch.nn
import torch.nn.functional as F
from dgl.nn.pytorch.glob import SortPooling


class GraphCrossModule(torch.nn.Module):
    """
    Description
    -----------
    The Graph Cross Module used by Graph Cross Networks.
    This module only contains graph cross layers.

    Parameters
    ----------
    pool_ratios : Union[float, List[float]]
        The pooling ratios (for keeping nodes) for each layer.
        For example, if `pool_ratio=0.8`, 80\% nodes will be preserved.
        If a single float number is given, all pooling layers will have the
        same pooling ratio.
    in_dim : int
        The number of input node feature channels.
    out_dim : int
        The number of output node feature channels.
    hidden_dim : int
        The number of hidden node feature channels.
    cross_weight : float, optional
        The weight parameter used in graph cross layers
        Default: :obj:`1.0`
    fuse_weight : float, optional
        The weight parameter used at the end of GXN for channel fusion.
        Default: :obj:`1.0`
    """
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
38
39
40
41
42
43
44
45
46
47
48
49

    def __init__(
        self,
        pool_ratios: Union[float, List[float]],
        in_dim: int,
        out_dim: int,
        hidden_dim: int,
        cross_weight: float = 1.0,
        fuse_weight: float = 1.0,
        dist: int = 1,
        num_cross_layers: int = 2,
    ):
50
51
52
53
54
55
56
57
58
59
60
61
        super(GraphCrossModule, self).__init__()
        if isinstance(pool_ratios, float):
            pool_ratios = (pool_ratios, pool_ratios)
        self.cross_weight = cross_weight
        self.fuse_weight = fuse_weight
        self.num_cross_layers = num_cross_layers

        # build network
        self.start_gcn_scale1 = GraphConvWithDropout(in_dim, hidden_dim)
        self.start_gcn_scale2 = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.end_gcn = GraphConvWithDropout(2 * hidden_dim, out_dim)

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
62
63
64
65
66
67
        self.index_select_scale1 = IndexSelect(
            pool_ratios[0], hidden_dim, act="prelu", dist=dist
        )
        self.index_select_scale2 = IndexSelect(
            pool_ratios[1], hidden_dim, act="prelu", dist=dist
        )
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        self.start_pool_s12 = GraphPool(hidden_dim)
        self.start_pool_s23 = GraphPool(hidden_dim)
        self.end_unpool_s21 = GraphUnpool(hidden_dim)
        self.end_unpool_s32 = GraphUnpool(hidden_dim)

        self.s1_l1_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s1_l2_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s1_l3_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)

        self.s2_l1_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s2_l2_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s2_l3_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)

        self.s3_l1_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s3_l2_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s3_l3_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)

        if num_cross_layers >= 1:
            self.pool_s12_1 = GraphPool(hidden_dim, use_gcn=True)
            self.unpool_s21_1 = GraphUnpool(hidden_dim)
            self.pool_s23_1 = GraphPool(hidden_dim, use_gcn=True)
            self.unpool_s32_1 = GraphUnpool(hidden_dim)
        if num_cross_layers >= 2:
            self.pool_s12_2 = GraphPool(hidden_dim, use_gcn=True)
            self.unpool_s21_2 = GraphUnpool(hidden_dim)
            self.pool_s23_2 = GraphPool(hidden_dim, use_gcn=True)
            self.unpool_s32_2 = GraphUnpool(hidden_dim)

    def forward(self, graph, feat):
        # start of scale-1
        graph_scale1 = graph
        feat_scale1 = self.start_gcn_scale1(graph_scale1, feat)
        feat_origin = feat_scale1
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        feat_scale1_neg = feat_scale1[
            torch.randperm(feat_scale1.size(0))
        ]  # negative samples
        (
            logit_s1,
            scores_s1,
            select_idx_s1,
            non_select_idx_s1,
            feat_down_s1,
        ) = self.index_select_scale1(graph_scale1, feat_scale1, feat_scale1_neg)
        feat_scale2, graph_scale2 = self.start_pool_s12(
            graph_scale1,
            feat_scale1,
            select_idx_s1,
            non_select_idx_s1,
            scores_s1,
            pool_graph=True,
        )

120
121
        # start of scale-2
        feat_scale2 = self.start_gcn_scale2(graph_scale2, feat_scale2)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        feat_scale2_neg = feat_scale2[
            torch.randperm(feat_scale2.size(0))
        ]  # negative samples
        (
            logit_s2,
            scores_s2,
            select_idx_s2,
            non_select_idx_s2,
            feat_down_s2,
        ) = self.index_select_scale2(graph_scale2, feat_scale2, feat_scale2_neg)
        feat_scale3, graph_scale3 = self.start_pool_s23(
            graph_scale2,
            feat_scale2,
            select_idx_s2,
            non_select_idx_s2,
            scores_s2,
            pool_graph=True,
        )

141
142
        # layer-1
        res_s1_0, res_s2_0, res_s3_0 = feat_scale1, feat_scale2, feat_scale3
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
143

144
145
146
147
148
        feat_scale1 = F.relu(self.s1_l1_gcn(graph_scale1, feat_scale1))
        feat_scale2 = F.relu(self.s2_l1_gcn(graph_scale2, feat_scale2))
        feat_scale3 = F.relu(self.s3_l1_gcn(graph_scale3, feat_scale3))

        if self.num_cross_layers >= 1:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
            feat_s12_fu = self.pool_s12_1(
                graph_scale1,
                feat_scale1,
                select_idx_s1,
                non_select_idx_s1,
                scores_s1,
            )
            feat_s21_fu = self.unpool_s21_1(
                graph_scale1, feat_scale2, select_idx_s1
            )
            feat_s23_fu = self.pool_s23_1(
                graph_scale2,
                feat_scale2,
                select_idx_s2,
                non_select_idx_s2,
                scores_s2,
            )
            feat_s32_fu = self.unpool_s32_1(
                graph_scale2, feat_scale3, select_idx_s2
            )

            feat_scale1 = (
                feat_scale1 + self.cross_weight * feat_s21_fu + res_s1_0
            )
            feat_scale2 = (
                feat_scale2
                + self.cross_weight * (feat_s12_fu + feat_s32_fu) / 2
                + res_s2_0
            )
            feat_scale3 = (
                feat_scale3 + self.cross_weight * feat_s23_fu + res_s3_0
            )

182
183
184
185
186
187
        # layer-2
        feat_scale1 = F.relu(self.s1_l2_gcn(graph_scale1, feat_scale1))
        feat_scale2 = F.relu(self.s2_l2_gcn(graph_scale2, feat_scale2))
        feat_scale3 = F.relu(self.s3_l2_gcn(graph_scale3, feat_scale3))

        if self.num_cross_layers >= 2:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
            feat_s12_fu = self.pool_s12_2(
                graph_scale1,
                feat_scale1,
                select_idx_s1,
                non_select_idx_s1,
                scores_s1,
            )
            feat_s21_fu = self.unpool_s21_2(
                graph_scale1, feat_scale2, select_idx_s1
            )
            feat_s23_fu = self.pool_s23_2(
                graph_scale2,
                feat_scale2,
                select_idx_s2,
                non_select_idx_s2,
                scores_s2,
            )
            feat_s32_fu = self.unpool_s32_2(
                graph_scale2, feat_scale3, select_idx_s2
            )
208
209
210

            cross_weight = self.cross_weight * 0.05
            feat_scale1 = feat_scale1 + cross_weight * feat_s21_fu
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
211
212
213
            feat_scale2 = (
                feat_scale2 + cross_weight * (feat_s12_fu + feat_s32_fu) / 2
            )
214
            feat_scale3 = feat_scale3 + cross_weight * feat_s23_fu
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
215

216
217
218
219
220
221
        # layer-3
        feat_scale1 = F.relu(self.s1_l3_gcn(graph_scale1, feat_scale1))
        feat_scale2 = F.relu(self.s2_l3_gcn(graph_scale2, feat_scale2))
        feat_scale3 = F.relu(self.s3_l3_gcn(graph_scale3, feat_scale3))

        # final layers
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
222
223
224
225
226
227
228
229
230
231
232
233
        feat_s3_out = (
            self.end_unpool_s32(graph_scale2, feat_scale3, select_idx_s2)
            + feat_down_s2
        )
        feat_s2_out = self.end_unpool_s21(
            graph_scale1, feat_scale2 + feat_s3_out, select_idx_s1
        )
        feat_agg = (
            feat_scale1
            + self.fuse_weight * feat_s2_out
            + self.fuse_weight * feat_down_s1
        )
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        feat_agg = torch.cat((feat_agg, feat_origin), dim=1)
        feat_agg = self.end_gcn(graph_scale1, feat_agg)

        return feat_agg, logit_s1, logit_s2


class GraphCrossNet(torch.nn.Module):
    """
    Description
    -----------
    The Graph Cross Network.

    Parameters
    ----------
    in_dim : int
        The number of input node feature channels.
    out_dim : int
        The number of output node feature channels.
    edge_feat_dim : int, optional
        The number of input edge feature channels. Edge feature
        will be passed to a Linear layer and concatenated to
        input node features. Default: :obj:`0`
    hidden_dim : int, optional
        The number of hidden node feature channels.
        Default: :obj:`96`
    pool_ratios : Union[float, List[float]], optional
        The pooling ratios (for keeping nodes) for each layer.
        For example, if `pool_ratio=0.8`, 80\% nodes will be preserved.
        If a single float number is given, all pooling layers will have the
        same pooling ratio.
        Default: :obj:`[0.9, 0.7]`
    readout_nodes : int, optional
        Number of nodes perserved in the final sort pool operation.
        Default: :obj:`30`
    conv1d_dims : List[int], optional
        The number of kernels of Conv1d operations.
        Default: :obj:`[16, 32]`
    conv1d_kws : List[int], optional
        The kernel size of Conv1d.
        Default: :obj:`[5]`
    cross_weight : float, optional
        The weight parameter used in graph cross layers
        Default: :obj:`1.0`
    fuse_weight : float, optional
        The weight parameter used at the end of GXN for channel fusion.
        Default: :obj:`1.0`
    """
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

    def __init__(
        self,
        in_dim: int,
        out_dim: int,
        edge_feat_dim: int = 0,
        hidden_dim: int = 96,
        pool_ratios: Union[List[float], float] = [0.9, 0.7],
        readout_nodes: int = 30,
        conv1d_dims: List[int] = [16, 32],
        conv1d_kws: List[int] = [5],
        cross_weight: float = 1.0,
        fuse_weight: float = 1.0,
        dist: int = 1,
    ):
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        super(GraphCrossNet, self).__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.hidden_dim = hidden_dim
        self.edge_feat_dim = edge_feat_dim
        self.readout_nodes = readout_nodes
        conv1d_kws = [hidden_dim] + conv1d_kws

        if edge_feat_dim > 0:
            self.in_dim += hidden_dim
            self.e2l_lin = torch.nn.Linear(edge_feat_dim, hidden_dim)
        else:
            self.e2l_lin = None

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
310
311
312
313
314
315
316
317
318
        self.gxn = GraphCrossModule(
            pool_ratios,
            in_dim=self.in_dim,
            out_dim=hidden_dim,
            hidden_dim=hidden_dim // 2,
            cross_weight=cross_weight,
            fuse_weight=fuse_weight,
            dist=dist,
        )
319
320
321
        self.sortpool = SortPooling(readout_nodes)

        # final updates
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
322
323
324
        self.final_conv1 = torch.nn.Conv1d(
            1, conv1d_dims[0], kernel_size=conv1d_kws[0], stride=conv1d_kws[0]
        )
325
        self.final_maxpool = torch.nn.MaxPool1d(2, 2)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
326
327
328
        self.final_conv2 = torch.nn.Conv1d(
            conv1d_dims[0], conv1d_dims[1], kernel_size=conv1d_kws[1], stride=1
        )
329
        self.final_dense_dim = int((readout_nodes - 2) / 2 + 1)
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
330
331
332
        self.final_dense_dim = (
            self.final_dense_dim - conv1d_kws[1] + 1
        ) * conv1d_dims[1]
333
334
335
336
337

        if self.out_dim > 0:
            self.out_lin = torch.nn.Linear(self.final_dense_dim, out_dim)

        self.init_weights()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
338

339
340
341
342
343
344
345
346
    def init_weights(self):
        if self.e2l_lin is not None:
            torch.nn.init.xavier_normal_(self.e2l_lin.weight)
        torch.nn.init.xavier_normal_(self.final_conv1.weight)
        torch.nn.init.xavier_normal_(self.final_conv2.weight)
        if self.out_dim > 0:
            torch.nn.init.xavier_normal_(self.out_lin.weight)

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
347
348
349
350
351
352
    def forward(
        self,
        graph: DGLGraph,
        node_feat: Tensor,
        edge_feat: Optional[Tensor] = None,
    ):
353
354
355
356
357
        num_batch = graph.batch_size
        if edge_feat is not None:
            edge_feat = self.e2l_lin(edge_feat)
            with graph.local_scope():
                graph.edata["he"] = edge_feat
358
                graph.update_all(fn.copy_e("he", "m"), fn.sum("m", "hn"))
359
360
361
362
363
364
365
366
367
368
369
                edge2node_feat = graph.ndata.pop("hn")
                node_feat = torch.cat((node_feat, edge2node_feat), dim=1)

        node_feat, logits1, logits2 = self.gxn(graph, node_feat)
        batch_sortpool_feats = self.sortpool(graph, node_feat)

        # final updates
        to_conv1d = batch_sortpool_feats.unsqueeze(1)
        conv1d_result = F.relu(self.final_conv1(to_conv1d))
        conv1d_result = self.final_maxpool(conv1d_result)
        conv1d_result = F.relu(self.final_conv2(conv1d_result))
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
370

371
372
373
374
375
        to_dense = conv1d_result.view(num_batch, -1)
        if self.out_dim > 0:
            out = F.relu(self.out_lin(to_dense))
        else:
            out = to_dense
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
376

377
378
379
380
381
382
383
384
385
386
        return out, logits1, logits2


class GraphClassifier(torch.nn.Module):
    """
    Description
    -----------
    Graph Classifier for graph classification.
    GXN + MLP
    """
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
387

388
389
    def __init__(self, args):
        super(GraphClassifier, self).__init__()
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
390
391
392
393
394
395
396
397
398
399
400
401
        self.gxn = GraphCrossNet(
            in_dim=args.in_dim,
            out_dim=args.embed_dim,
            edge_feat_dim=args.edge_feat_dim,
            hidden_dim=args.hidden_dim,
            pool_ratios=args.pool_ratios,
            readout_nodes=args.readout_nodes,
            conv1d_dims=args.conv1d_dims,
            conv1d_kws=args.conv1d_kws,
            cross_weight=args.cross_weight,
            fuse_weight=args.fuse_weight,
        )
402
403
404
405
        self.lin1 = torch.nn.Linear(args.embed_dim, args.final_dense_hidden_dim)
        self.lin2 = torch.nn.Linear(args.final_dense_hidden_dim, args.out_dim)
        self.dropout = args.dropout

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
406
407
408
409
410
411
    def forward(
        self,
        graph: DGLGraph,
        node_feat: Tensor,
        edge_feat: Optional[Tensor] = None,
    ):
412
413
414
415
416
417
        embed, logits1, logits2 = self.gxn(graph, node_feat, edge_feat)
        logits = F.relu(self.lin1(embed))
        if self.dropout > 0:
            logits = F.dropout(logits, p=self.dropout, training=self.training)
        logits = self.lin2(logits)
        return F.log_softmax(logits, dim=1), logits1, logits2