networks.py 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
from typing import List, Tuple, Union

from layers import *
import torch
import torch.nn
import torch.nn.functional as F
import dgl.function as fn
from dgl.nn.pytorch.glob import SortPooling


class GraphCrossModule(torch.nn.Module):
    """
    Description
    -----------
    The Graph Cross Module used by Graph Cross Networks.
    This module only contains graph cross layers.

    Parameters
    ----------
    pool_ratios : Union[float, List[float]]
        The pooling ratios (for keeping nodes) for each layer.
        For example, if `pool_ratio=0.8`, 80\% nodes will be preserved.
        If a single float number is given, all pooling layers will have the
        same pooling ratio.
    in_dim : int
        The number of input node feature channels.
    out_dim : int
        The number of output node feature channels.
    hidden_dim : int
        The number of hidden node feature channels.
    cross_weight : float, optional
        The weight parameter used in graph cross layers
        Default: :obj:`1.0`
    fuse_weight : float, optional
        The weight parameter used at the end of GXN for channel fusion.
        Default: :obj:`1.0`
    """
    def __init__(self, pool_ratios:Union[float, List[float]], in_dim:int,
                 out_dim:int, hidden_dim:int, cross_weight:float=1.,
                 fuse_weight:float=1., dist:int=1, num_cross_layers:int=2):
        super(GraphCrossModule, self).__init__()
        if isinstance(pool_ratios, float):
            pool_ratios = (pool_ratios, pool_ratios)
        self.cross_weight = cross_weight
        self.fuse_weight = fuse_weight
        self.num_cross_layers = num_cross_layers

        # build network
        self.start_gcn_scale1 = GraphConvWithDropout(in_dim, hidden_dim)
        self.start_gcn_scale2 = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.end_gcn = GraphConvWithDropout(2 * hidden_dim, out_dim)

        self.index_select_scale1 = IndexSelect(pool_ratios[0], hidden_dim, act="prelu", dist=dist)
        self.index_select_scale2 = IndexSelect(pool_ratios[1], hidden_dim, act="prelu", dist=dist)
        self.start_pool_s12 = GraphPool(hidden_dim)
        self.start_pool_s23 = GraphPool(hidden_dim)
        self.end_unpool_s21 = GraphUnpool(hidden_dim)
        self.end_unpool_s32 = GraphUnpool(hidden_dim)

        self.s1_l1_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s1_l2_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s1_l3_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)

        self.s2_l1_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s2_l2_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s2_l3_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)

        self.s3_l1_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s3_l2_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)
        self.s3_l3_gcn = GraphConvWithDropout(hidden_dim, hidden_dim)

        if num_cross_layers >= 1:
            self.pool_s12_1 = GraphPool(hidden_dim, use_gcn=True)
            self.unpool_s21_1 = GraphUnpool(hidden_dim)
            self.pool_s23_1 = GraphPool(hidden_dim, use_gcn=True)
            self.unpool_s32_1 = GraphUnpool(hidden_dim)
        if num_cross_layers >= 2:
            self.pool_s12_2 = GraphPool(hidden_dim, use_gcn=True)
            self.unpool_s21_2 = GraphUnpool(hidden_dim)
            self.pool_s23_2 = GraphPool(hidden_dim, use_gcn=True)
            self.unpool_s32_2 = GraphUnpool(hidden_dim)

    def forward(self, graph, feat):
        # start of scale-1
        graph_scale1 = graph
        feat_scale1 = self.start_gcn_scale1(graph_scale1, feat)
        feat_origin = feat_scale1
        feat_scale1_neg = feat_scale1[torch.randperm(feat_scale1.size(0))] # negative samples
        logit_s1, scores_s1, select_idx_s1, non_select_idx_s1, feat_down_s1 = \
            self.index_select_scale1(graph_scale1, feat_scale1, feat_scale1_neg)
        feat_scale2, graph_scale2 = self.start_pool_s12(graph_scale1, feat_scale1,
                                                        select_idx_s1, non_select_idx_s1,
                                                        scores_s1, pool_graph=True)
        
        # start of scale-2
        feat_scale2 = self.start_gcn_scale2(graph_scale2, feat_scale2)
        feat_scale2_neg = feat_scale2[torch.randperm(feat_scale2.size(0))] # negative samples
        logit_s2, scores_s2, select_idx_s2, non_select_idx_s2, feat_down_s2 = \
            self.index_select_scale2(graph_scale2, feat_scale2, feat_scale2_neg)
        feat_scale3, graph_scale3 = self.start_pool_s23(graph_scale2, feat_scale2,
                                                        select_idx_s2, non_select_idx_s2,
                                                        scores_s2, pool_graph=True)
        
        # layer-1
        res_s1_0, res_s2_0, res_s3_0 = feat_scale1, feat_scale2, feat_scale3
        
        feat_scale1 = F.relu(self.s1_l1_gcn(graph_scale1, feat_scale1))
        feat_scale2 = F.relu(self.s2_l1_gcn(graph_scale2, feat_scale2))
        feat_scale3 = F.relu(self.s3_l1_gcn(graph_scale3, feat_scale3))

        if self.num_cross_layers >= 1:
            feat_s12_fu = self.pool_s12_1(graph_scale1, feat_scale1,
                                          select_idx_s1, non_select_idx_s1,
                                          scores_s1)
            feat_s21_fu = self.unpool_s21_1(graph_scale1, feat_scale2, select_idx_s1)
            feat_s23_fu = self.pool_s23_1(graph_scale2, feat_scale2,
                                          select_idx_s2, non_select_idx_s2,
                                          scores_s2)
            feat_s32_fu = self.unpool_s32_1(graph_scale2, feat_scale3, select_idx_s2)

            feat_scale1 = feat_scale1 + self.cross_weight * feat_s21_fu + res_s1_0
            feat_scale2 = feat_scale2 + self.cross_weight * (feat_s12_fu + feat_s32_fu) / 2 + res_s2_0
            feat_scale3 = feat_scale3 + self.cross_weight * feat_s23_fu + res_s3_0
        
        # layer-2
        feat_scale1 = F.relu(self.s1_l2_gcn(graph_scale1, feat_scale1))
        feat_scale2 = F.relu(self.s2_l2_gcn(graph_scale2, feat_scale2))
        feat_scale3 = F.relu(self.s3_l2_gcn(graph_scale3, feat_scale3))

        if self.num_cross_layers >= 2:
            feat_s12_fu = self.pool_s12_2(graph_scale1, feat_scale1,
                                          select_idx_s1, non_select_idx_s1,
                                          scores_s1)
            feat_s21_fu = self.unpool_s21_2(graph_scale1, feat_scale2, select_idx_s1)
            feat_s23_fu = self.pool_s23_2(graph_scale2, feat_scale2,
                                          select_idx_s2, non_select_idx_s2,
                                          scores_s2)
            feat_s32_fu = self.unpool_s32_2(graph_scale2, feat_scale3, select_idx_s2)

            cross_weight = self.cross_weight * 0.05
            feat_scale1 = feat_scale1 + cross_weight * feat_s21_fu
            feat_scale2 = feat_scale2 + cross_weight * (feat_s12_fu + feat_s32_fu) / 2
            feat_scale3 = feat_scale3 + cross_weight * feat_s23_fu
        
        # layer-3
        feat_scale1 = F.relu(self.s1_l3_gcn(graph_scale1, feat_scale1))
        feat_scale2 = F.relu(self.s2_l3_gcn(graph_scale2, feat_scale2))
        feat_scale3 = F.relu(self.s3_l3_gcn(graph_scale3, feat_scale3))

        # final layers
        feat_s3_out = self.end_unpool_s32(graph_scale2, feat_scale3, select_idx_s2) + feat_down_s2
        feat_s2_out = self.end_unpool_s21(graph_scale1, feat_scale2 + feat_s3_out, select_idx_s1)
        feat_agg = feat_scale1 + self.fuse_weight * feat_s2_out + self.fuse_weight * feat_down_s1
        feat_agg = torch.cat((feat_agg, feat_origin), dim=1)
        feat_agg = self.end_gcn(graph_scale1, feat_agg)

        return feat_agg, logit_s1, logit_s2


class GraphCrossNet(torch.nn.Module):
    """
    Description
    -----------
    The Graph Cross Network.

    Parameters
    ----------
    in_dim : int
        The number of input node feature channels.
    out_dim : int
        The number of output node feature channels.
    edge_feat_dim : int, optional
        The number of input edge feature channels. Edge feature
        will be passed to a Linear layer and concatenated to
        input node features. Default: :obj:`0`
    hidden_dim : int, optional
        The number of hidden node feature channels.
        Default: :obj:`96`
    pool_ratios : Union[float, List[float]], optional
        The pooling ratios (for keeping nodes) for each layer.
        For example, if `pool_ratio=0.8`, 80\% nodes will be preserved.
        If a single float number is given, all pooling layers will have the
        same pooling ratio.
        Default: :obj:`[0.9, 0.7]`
    readout_nodes : int, optional
        Number of nodes perserved in the final sort pool operation.
        Default: :obj:`30`
    conv1d_dims : List[int], optional
        The number of kernels of Conv1d operations.
        Default: :obj:`[16, 32]`
    conv1d_kws : List[int], optional
        The kernel size of Conv1d.
        Default: :obj:`[5]`
    cross_weight : float, optional
        The weight parameter used in graph cross layers
        Default: :obj:`1.0`
    fuse_weight : float, optional
        The weight parameter used at the end of GXN for channel fusion.
        Default: :obj:`1.0`
    """
    def __init__(self, in_dim:int, out_dim:int, edge_feat_dim:int=0,
                 hidden_dim:int=96, pool_ratios:Union[List[float], float]=[0.9, 0.7],
                 readout_nodes:int=30, conv1d_dims:List[int]=[16, 32],
                 conv1d_kws:List[int]=[5],
                 cross_weight:float=1., fuse_weight:float=1., dist:int=1):
        super(GraphCrossNet, self).__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.hidden_dim = hidden_dim
        self.edge_feat_dim = edge_feat_dim
        self.readout_nodes = readout_nodes
        conv1d_kws = [hidden_dim] + conv1d_kws

        if edge_feat_dim > 0:
            self.in_dim += hidden_dim
            self.e2l_lin = torch.nn.Linear(edge_feat_dim, hidden_dim)
        else:
            self.e2l_lin = None

        self.gxn = GraphCrossModule(pool_ratios, in_dim=self.in_dim, out_dim=hidden_dim,
                                    hidden_dim=hidden_dim//2, cross_weight=cross_weight,
                                    fuse_weight=fuse_weight, dist=dist)
        self.sortpool = SortPooling(readout_nodes)

        # final updates
        self.final_conv1 = torch.nn.Conv1d(1, conv1d_dims[0],
                                                kernel_size=conv1d_kws[0],
                                                stride=conv1d_kws[0])
        self.final_maxpool = torch.nn.MaxPool1d(2, 2)
        self.final_conv2 = torch.nn.Conv1d(conv1d_dims[0], conv1d_dims[1],
                                                 kernel_size=conv1d_kws[1], stride=1)
        self.final_dense_dim = int((readout_nodes - 2) / 2 + 1)
        self.final_dense_dim = (self.final_dense_dim - conv1d_kws[1] + 1) * conv1d_dims[1]

        if self.out_dim > 0:
            self.out_lin = torch.nn.Linear(self.final_dense_dim, out_dim)

        self.init_weights()
    
    def init_weights(self):
        if self.e2l_lin is not None:
            torch.nn.init.xavier_normal_(self.e2l_lin.weight)
        torch.nn.init.xavier_normal_(self.final_conv1.weight)
        torch.nn.init.xavier_normal_(self.final_conv2.weight)
        if self.out_dim > 0:
            torch.nn.init.xavier_normal_(self.out_lin.weight)

    def forward(self, graph:DGLGraph, node_feat:Tensor, edge_feat:Optional[Tensor]=None):
        num_batch = graph.batch_size
        if edge_feat is not None:
            edge_feat = self.e2l_lin(edge_feat)
            with graph.local_scope():
                graph.edata["he"] = edge_feat
                graph.update_all(fn.copy_edge("he", "m"), fn.sum("m", "hn"))
                edge2node_feat = graph.ndata.pop("hn")
                node_feat = torch.cat((node_feat, edge2node_feat), dim=1)

        node_feat, logits1, logits2 = self.gxn(graph, node_feat)
        batch_sortpool_feats = self.sortpool(graph, node_feat)

        # final updates
        to_conv1d = batch_sortpool_feats.unsqueeze(1)
        conv1d_result = F.relu(self.final_conv1(to_conv1d))
        conv1d_result = self.final_maxpool(conv1d_result)
        conv1d_result = F.relu(self.final_conv2(conv1d_result))
        
        to_dense = conv1d_result.view(num_batch, -1)
        if self.out_dim > 0:
            out = F.relu(self.out_lin(to_dense))
        else:
            out = to_dense
        
        return out, logits1, logits2


class GraphClassifier(torch.nn.Module):
    """
    Description
    -----------
    Graph Classifier for graph classification.
    GXN + MLP
    """
    def __init__(self, args):
        super(GraphClassifier, self).__init__()
        self.gxn = GraphCrossNet(in_dim=args.in_dim, 
                                 out_dim=args.embed_dim,
                                 edge_feat_dim=args.edge_feat_dim,
                                 hidden_dim=args.hidden_dim,
                                 pool_ratios=args.pool_ratios,
                                 readout_nodes=args.readout_nodes,
                                 conv1d_dims=args.conv1d_dims,
                                 conv1d_kws=args.conv1d_kws,
                                 cross_weight=args.cross_weight,
                                 fuse_weight=args.fuse_weight)
        self.lin1 = torch.nn.Linear(args.embed_dim, args.final_dense_hidden_dim)
        self.lin2 = torch.nn.Linear(args.final_dense_hidden_dim, args.out_dim)
        self.dropout = args.dropout

    def forward(self, graph:DGLGraph, node_feat:Tensor, edge_feat:Optional[Tensor]=None):
        embed, logits1, logits2 = self.gxn(graph, node_feat, edge_feat)
        logits = F.relu(self.lin1(embed))
        if self.dropout > 0:
            logits = F.dropout(logits, p=self.dropout, training=self.training)
        logits = self.lin2(logits)
        return F.log_softmax(logits, dim=1), logits1, logits2