train.py 6.63 KB
Newer Older
Shaked Brody's avatar
Shaked Brody committed
1
2
3
4
5
6
7
"""
Graph Attention Networks v2 (GATv2) in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.
"""

import argparse
import time
8

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
9
10
import dgl

11
import numpy as np
Shaked Brody's avatar
Shaked Brody committed
12
13
import torch
import torch.nn.functional as F
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
14
15
16
17
18
19
from dgl.data import (
    CiteseerGraphDataset,
    CoraGraphDataset,
    PubmedGraphDataset,
    register_data_args,
)
Shaked Brody's avatar
Shaked Brody committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from gatv2 import GATv2


class EarlyStopping:
    def __init__(self, patience=10):
        self.patience = patience
        self.counter = 0
        self.best_score = None
        self.early_stop = False

    def step(self, acc, model):
        score = acc
        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(model)
        elif score < self.best_score:
            self.counter += 1
37
38
39
            print(
                f"EarlyStopping counter: {self.counter} out of {self.patience}"
            )
Shaked Brody's avatar
Shaked Brody committed
40
41
42
43
44
45
46
47
48
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(model)
            self.counter = 0
        return self.early_stop

    def save_checkpoint(self, model):
49
50
51
        """Saves model when validation loss decrease."""
        torch.save(model.state_dict(), "es_checkpoint.pt")

Shaked Brody's avatar
Shaked Brody committed
52
53
54
55
56
57
58

def accuracy(logits, labels):
    _, indices = torch.max(logits, dim=1)
    correct = torch.sum(indices == labels)
    return correct.item() * 1.0 / len(labels)


59
def evaluate(g, model, features, labels, mask):
Shaked Brody's avatar
Shaked Brody committed
60
61
62
63
64
65
66
67
68
69
    model.eval()
    with torch.no_grad():
        logits = model(g, features)
        logits = logits[mask]
        labels = labels[mask]
        return accuracy(logits, labels)


def main(args):
    # load and preprocess dataset
70
    if args.dataset == "cora":
Shaked Brody's avatar
Shaked Brody committed
71
        data = CoraGraphDataset()
72
    elif args.dataset == "citeseer":
Shaked Brody's avatar
Shaked Brody committed
73
        data = CiteseerGraphDataset()
74
    elif args.dataset == "pubmed":
Shaked Brody's avatar
Shaked Brody committed
75
76
        data = PubmedGraphDataset()
    else:
77
        raise ValueError("Unknown dataset: {}".format(args.dataset))
Shaked Brody's avatar
Shaked Brody committed
78
79
80
81
82
83
84
85

    g = data[0]
    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        g = g.int().to(args.gpu)

86
87
88
89
90
    features = g.ndata["feat"]
    labels = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]
Shaked Brody's avatar
Shaked Brody committed
91
92
    num_feats = features.shape[1]
    n_classes = data.num_labels
93
    n_edges = g.number_of_edges()
94
95
    print(
        """----Data statistics------'
Shaked Brody's avatar
Shaked Brody committed
96
97
98
99
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
100
101
102
103
104
105
106
107
108
      #Test samples %d"""
        % (
            n_edges,
            n_classes,
            train_mask.int().sum().item(),
            val_mask.int().sum().item(),
            test_mask.int().sum().item(),
        )
    )
Shaked Brody's avatar
Shaked Brody committed
109
110
111
112
113
114
115

    # add self loop
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)
    n_edges = g.number_of_edges()
    # create model
    heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
116
117
118
119
120
121
122
123
124
125
126
127
    model = GATv2(
        args.num_layers,
        num_feats,
        args.num_hidden,
        n_classes,
        heads,
        F.elu,
        args.in_drop,
        args.attn_drop,
        args.negative_slope,
        args.residual,
    )
Shaked Brody's avatar
Shaked Brody committed
128
129
130
131
132
133
134
135
136
    print(model)
    if args.early_stop:
        stopper = EarlyStopping(patience=100)
    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(
137
138
        model.parameters(), lr=args.lr, weight_decay=args.weight_decay
    )
Shaked Brody's avatar
Shaked Brody committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

    # initialize graph
    dur = []
    for epoch in range(args.epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(g, features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        train_acc = accuracy(logits[train_mask], labels[train_mask])

        if args.fastmode:
            val_acc = accuracy(logits[val_mask], labels[val_mask])
        else:
            val_acc = evaluate(g, model, features, labels, val_mask)
            if args.early_stop:
                if stopper.step(val_acc, model):
                    break

167
168
169
170
171
172
173
174
175
176
177
        print(
            "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |"
            " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format(
                epoch,
                np.mean(dur),
                loss.item(),
                train_acc,
                val_acc,
                n_edges / np.mean(dur) / 1000,
            )
        )
Shaked Brody's avatar
Shaked Brody committed
178
179
180

    print()
    if args.early_stop:
181
        model.load_state_dict(torch.load("es_checkpoint.pt"))
182
    acc = evaluate(g, model, features, labels, test_mask)
Shaked Brody's avatar
Shaked Brody committed
183
184
185
    print("Test Accuracy {:.4f}".format(acc))


186
187
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="GAT")
Shaked Brody's avatar
Shaked Brody committed
188
    register_data_args(parser)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    parser.add_argument(
        "--gpu",
        type=int,
        default=-1,
        help="which GPU to use. Set -1 to use CPU.",
    )
    parser.add_argument(
        "--epochs", type=int, default=200, help="number of training epochs"
    )
    parser.add_argument(
        "--num-heads",
        type=int,
        default=8,
        help="number of hidden attention heads",
    )
    parser.add_argument(
        "--num-out-heads",
        type=int,
        default=1,
        help="number of output attention heads",
    )
    parser.add_argument(
        "--num-layers", type=int, default=1, help="number of hidden layers"
    )
    parser.add_argument(
        "--num-hidden", type=int, default=8, help="number of hidden units"
    )
    parser.add_argument(
        "--residual",
        action="store_true",
        default=False,
        help="use residual connection",
    )
    parser.add_argument(
        "--in-drop", type=float, default=0.7, help="input feature dropout"
    )
    parser.add_argument(
        "--attn-drop", type=float, default=0.7, help="attention dropout"
    )
    parser.add_argument("--lr", type=float, default=0.005, help="learning rate")
    parser.add_argument(
        "--weight-decay", type=float, default=5e-4, help="weight decay"
    )
    parser.add_argument(
        "--negative-slope",
        type=float,
        default=0.2,
        help="the negative slope of leaky relu",
    )
    parser.add_argument(
        "--early-stop",
        action="store_true",
        default=False,
        help="indicates whether to use early stop or not",
    )
    parser.add_argument(
        "--fastmode",
        action="store_true",
        default=False,
        help="skip re-evaluate the validation set",
    )
Shaked Brody's avatar
Shaked Brody committed
250
251
252
253
    args = parser.parse_args()
    print(args)

    main(args)