train.py 6.64 KB
Newer Older
Shaked Brody's avatar
Shaked Brody committed
1
2
3
4
5
6
7
"""
Graph Attention Networks v2 (GATv2) in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.
"""

import argparse
import time
8
9

import numpy as np
Shaked Brody's avatar
Shaked Brody committed
10
11
12
13
import torch
import torch.nn.functional as F
from gatv2 import GATv2

14
15
16
17
import dgl
from dgl.data import (CiteseerGraphDataset, CoraGraphDataset,
                      PubmedGraphDataset, register_data_args)

Shaked Brody's avatar
Shaked Brody committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

class EarlyStopping:
    def __init__(self, patience=10):
        self.patience = patience
        self.counter = 0
        self.best_score = None
        self.early_stop = False

    def step(self, acc, model):
        score = acc
        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(model)
        elif score < self.best_score:
            self.counter += 1
33
34
35
            print(
                f"EarlyStopping counter: {self.counter} out of {self.patience}"
            )
Shaked Brody's avatar
Shaked Brody committed
36
37
38
39
40
41
42
43
44
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(model)
            self.counter = 0
        return self.early_stop

    def save_checkpoint(self, model):
45
46
47
        """Saves model when validation loss decrease."""
        torch.save(model.state_dict(), "es_checkpoint.pt")

Shaked Brody's avatar
Shaked Brody committed
48
49
50
51
52
53
54

def accuracy(logits, labels):
    _, indices = torch.max(logits, dim=1)
    correct = torch.sum(indices == labels)
    return correct.item() * 1.0 / len(labels)


55
def evaluate(g, model, features, labels, mask):
Shaked Brody's avatar
Shaked Brody committed
56
57
58
59
60
61
62
63
64
65
    model.eval()
    with torch.no_grad():
        logits = model(g, features)
        logits = logits[mask]
        labels = labels[mask]
        return accuracy(logits, labels)


def main(args):
    # load and preprocess dataset
66
    if args.dataset == "cora":
Shaked Brody's avatar
Shaked Brody committed
67
        data = CoraGraphDataset()
68
    elif args.dataset == "citeseer":
Shaked Brody's avatar
Shaked Brody committed
69
        data = CiteseerGraphDataset()
70
    elif args.dataset == "pubmed":
Shaked Brody's avatar
Shaked Brody committed
71
72
        data = PubmedGraphDataset()
    else:
73
        raise ValueError("Unknown dataset: {}".format(args.dataset))
Shaked Brody's avatar
Shaked Brody committed
74
75
76
77
78
79
80
81

    g = data[0]
    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        g = g.int().to(args.gpu)

82
83
84
85
86
    features = g.ndata["feat"]
    labels = g.ndata["label"]
    train_mask = g.ndata["train_mask"]
    val_mask = g.ndata["val_mask"]
    test_mask = g.ndata["test_mask"]
Shaked Brody's avatar
Shaked Brody committed
87
88
    num_feats = features.shape[1]
    n_classes = data.num_labels
89
    n_edges = g.number_of_edges()
90
91
    print(
        """----Data statistics------'
Shaked Brody's avatar
Shaked Brody committed
92
93
94
95
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
96
97
98
99
100
101
102
103
104
      #Test samples %d"""
        % (
            n_edges,
            n_classes,
            train_mask.int().sum().item(),
            val_mask.int().sum().item(),
            test_mask.int().sum().item(),
        )
    )
Shaked Brody's avatar
Shaked Brody committed
105
106
107
108
109
110
111

    # add self loop
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)
    n_edges = g.number_of_edges()
    # create model
    heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
112
113
114
115
116
117
118
119
120
121
122
123
    model = GATv2(
        args.num_layers,
        num_feats,
        args.num_hidden,
        n_classes,
        heads,
        F.elu,
        args.in_drop,
        args.attn_drop,
        args.negative_slope,
        args.residual,
    )
Shaked Brody's avatar
Shaked Brody committed
124
125
126
127
128
129
130
131
132
    print(model)
    if args.early_stop:
        stopper = EarlyStopping(patience=100)
    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(
133
134
        model.parameters(), lr=args.lr, weight_decay=args.weight_decay
    )
Shaked Brody's avatar
Shaked Brody committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

    # initialize graph
    dur = []
    for epoch in range(args.epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(g, features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        train_acc = accuracy(logits[train_mask], labels[train_mask])

        if args.fastmode:
            val_acc = accuracy(logits[val_mask], labels[val_mask])
        else:
            val_acc = evaluate(g, model, features, labels, val_mask)
            if args.early_stop:
                if stopper.step(val_acc, model):
                    break

163
164
165
166
167
168
169
170
171
172
173
        print(
            "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |"
            " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format(
                epoch,
                np.mean(dur),
                loss.item(),
                train_acc,
                val_acc,
                n_edges / np.mean(dur) / 1000,
            )
        )
Shaked Brody's avatar
Shaked Brody committed
174
175
176

    print()
    if args.early_stop:
177
        model.load_state_dict(torch.load("es_checkpoint.pt"))
178
    acc = evaluate(g, model, features, labels, test_mask)
Shaked Brody's avatar
Shaked Brody committed
179
180
181
    print("Test Accuracy {:.4f}".format(acc))


182
if __name__ == "__main__":
Shaked Brody's avatar
Shaked Brody committed
183

184
    parser = argparse.ArgumentParser(description="GAT")
Shaked Brody's avatar
Shaked Brody committed
185
    register_data_args(parser)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    parser.add_argument(
        "--gpu",
        type=int,
        default=-1,
        help="which GPU to use. Set -1 to use CPU.",
    )
    parser.add_argument(
        "--epochs", type=int, default=200, help="number of training epochs"
    )
    parser.add_argument(
        "--num-heads",
        type=int,
        default=8,
        help="number of hidden attention heads",
    )
    parser.add_argument(
        "--num-out-heads",
        type=int,
        default=1,
        help="number of output attention heads",
    )
    parser.add_argument(
        "--num-layers", type=int, default=1, help="number of hidden layers"
    )
    parser.add_argument(
        "--num-hidden", type=int, default=8, help="number of hidden units"
    )
    parser.add_argument(
        "--residual",
        action="store_true",
        default=False,
        help="use residual connection",
    )
    parser.add_argument(
        "--in-drop", type=float, default=0.7, help="input feature dropout"
    )
    parser.add_argument(
        "--attn-drop", type=float, default=0.7, help="attention dropout"
    )
    parser.add_argument("--lr", type=float, default=0.005, help="learning rate")
    parser.add_argument(
        "--weight-decay", type=float, default=5e-4, help="weight decay"
    )
    parser.add_argument(
        "--negative-slope",
        type=float,
        default=0.2,
        help="the negative slope of leaky relu",
    )
    parser.add_argument(
        "--early-stop",
        action="store_true",
        default=False,
        help="indicates whether to use early stop or not",
    )
    parser.add_argument(
        "--fastmode",
        action="store_true",
        default=False,
        help="skip re-evaluate the validation set",
    )
Shaked Brody's avatar
Shaked Brody committed
247
248
249
250
    args = parser.parse_args()
    print(args)

    main(args)