"vscode:/vscode.git/clone" did not exist on "4dec4df09083b1d1b97fae8b44da5e8f58a9f778"
main_sampling.py 8.41 KB
Newer Older
1
import argparse
2

Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
3
4
import dgl

5
6
import torch as th
import torch.optim as optim
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
7
from model_sampling import _l1_dist, CAREGNN, CARESampler
8
from sklearn.metrics import recall_score, roc_auc_score
9
from torch.nn.functional import softmax
10
from utils import EarlyStopping
11

12

13
def evaluate(model, loss_fn, dataloader, device="cpu"):
14
15
16
17
18
19
    loss = 0
    auc = 0
    recall = 0
    num_blocks = 0
    for input_nodes, output_nodes, blocks in dataloader:
        blocks = [b.to(device) for b in blocks]
20
21
        feature = blocks[0].srcdata["feature"]
        label = blocks[-1].dstdata["label"]
22
23
24
        logits_gnn, logits_sim = model(blocks, feature)

        # compute loss
25
26
27
28
29
30
31
32
33
34
        loss += (
            loss_fn(logits_gnn, label).item()
            + args.sim_weight * loss_fn(logits_sim, label).item()
        )
        recall += recall_score(
            label.cpu(), logits_gnn.argmax(dim=1).detach().cpu()
        )
        auc += roc_auc_score(
            label.cpu(), softmax(logits_gnn, dim=1)[:, 1].detach().cpu()
        )
35
36
37
38
39
40
41
42
43
44
45
46
47
48
        num_blocks += 1

    return recall / num_blocks, auc / num_blocks, loss / num_blocks


def main(args):
    # Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
    # Load dataset
    dataset = dgl.data.FraudDataset(args.dataset, train_size=0.4)
    graph = dataset[0]
    num_classes = dataset.num_classes

    # check cuda
    if args.gpu >= 0 and th.cuda.is_available():
49
        device = "cuda:{}".format(args.gpu)
50
51
        args.num_workers = 0
    else:
52
        device = "cpu"
53
54

    # retrieve labels of ground truth
55
    labels = graph.ndata["label"].to(device)
56
57

    # Extract node features
58
    feat = graph.ndata["feature"].to(device)
59
60
61
    layers_feat = feat.expand(args.num_layers, -1, -1)

    # retrieve masks for train/validation/test
62
63
64
    train_mask = graph.ndata["train_mask"]
    val_mask = graph.ndata["val_mask"]
    test_mask = graph.ndata["test_mask"]
65
66
67
68
69
70

    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze(1).to(device)
    val_idx = th.nonzero(val_mask, as_tuple=False).squeeze(1).to(device)
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze(1).to(device)

    # Reinforcement learning module only for positive training nodes
71
72
73
    rl_idx = th.nonzero(
        train_mask.to(device) & labels.bool(), as_tuple=False
    ).squeeze(1)
74
75
76
77

    graph = graph.to(device)

    # Step 2: Create model =================================================================== #
78
79
80
81
82
83
84
85
86
    model = CAREGNN(
        in_dim=feat.shape[-1],
        num_classes=num_classes,
        hid_dim=args.hid_dim,
        num_layers=args.num_layers,
        activation=th.tanh,
        step_size=args.step_size,
        edges=graph.canonical_etypes,
    )
87
88
89
90
91
92

    model = model.to(device)

    # Step 3: Create training components ===================================================== #
    _, cnt = th.unique(labels, return_counts=True)
    loss_fn = th.nn.CrossEntropyLoss(weight=1 / cnt)
93
94
95
    optimizer = optim.Adam(
        model.parameters(), lr=args.lr, weight_decay=args.weight_decay
    )
96
97
98
99
100
101
102
103
104
105
    if args.early_stop:
        stopper = EarlyStopping(patience=100)

    # Step 4: training epochs =============================================================== #
    for epoch in range(args.max_epoch):
        # calculate the distance of each edges and sample based on the distance
        dists = []
        p = []
        for i in range(args.num_layers):
            dist = {}
106
            graph.ndata["nd"] = th.tanh(model.layers[i].MLP(layers_feat[i]))
107
108
            for etype in graph.canonical_etypes:
                graph.apply_edges(_l1_dist, etype=etype)
109
                dist[etype] = graph.edges[etype].data.pop("ed").detach().cpu()
110
111
            dists.append(dist)
            p.append(model.layers[i].p)
112
        graph.ndata.pop("nd")
113
114
115
116
117
118
119
120
        sampler = CARESampler(p, dists, args.num_layers)

        # train
        model.train()
        tr_loss = 0
        tr_recall = 0
        tr_auc = 0
        tr_blk = 0
Xin Yao's avatar
Xin Yao committed
121
        train_dataloader = dgl.dataloading.DataLoader(
122
123
124
125
126
127
128
129
            graph,
            train_idx,
            sampler,
            batch_size=args.batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=args.num_workers,
        )
130
131
132

        for input_nodes, output_nodes, blocks in train_dataloader:
            blocks = [b.to(device) for b in blocks]
133
134
            train_feature = blocks[0].srcdata["feature"]
            train_label = blocks[-1].dstdata["label"]
135
136
137
            logits_gnn, logits_sim = model(blocks, train_feature)

            # compute loss
138
139
140
            blk_loss = loss_fn(
                logits_gnn, train_label
            ) + args.sim_weight * loss_fn(logits_sim, train_label)
141
            tr_loss += blk_loss.item()
142
143
144
145
146
147
148
            tr_recall += recall_score(
                train_label.cpu(), logits_gnn.argmax(dim=1).detach().cpu()
            )
            tr_auc += roc_auc_score(
                train_label.cpu(),
                softmax(logits_gnn, dim=1)[:, 1].detach().cpu(),
            )
149
150
151
152
153
154
155
156
157
158
159
160
            tr_blk += 1

            # backward
            optimizer.zero_grad()
            blk_loss.backward()
            optimizer.step()

        # Reinforcement learning module
        model.RLModule(graph, epoch, rl_idx, dists)

        # validation
        model.eval()
Xin Yao's avatar
Xin Yao committed
161
        val_dataloader = dgl.dataloading.DataLoader(
162
163
164
165
166
167
168
169
170
171
172
173
            graph,
            val_idx,
            sampler,
            batch_size=args.batch_size,
            shuffle=True,
            drop_last=False,
            num_workers=args.num_workers,
        )

        val_recall, val_auc, val_loss = evaluate(
            model, loss_fn, val_dataloader, device
        )
174
175

        # Print out performance
176
177
178
179
180
181
182
183
184
185
186
187
        print(
            "In epoch {}, Train Recall: {:.4f} | Train AUC: {:.4f} | Train Loss: {:.4f}; "
            "Valid Recall: {:.4f} | Valid AUC: {:.4f} | Valid loss: {:.4f}".format(
                epoch,
                tr_recall / tr_blk,
                tr_auc / tr_blk,
                tr_loss / tr_blk,
                val_recall,
                val_auc,
                val_loss,
            )
        )
188
189
190
191
192
193
194
195

        if args.early_stop:
            if stopper.step(val_auc, model):
                break

    # Test with mini batch after all epoch
    model.eval()
    if args.early_stop:
196
        model.load_state_dict(th.load("es_checkpoint.pt"))
Xin Yao's avatar
Xin Yao committed
197
    test_dataloader = dgl.dataloading.DataLoader(
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        graph,
        test_idx,
        sampler,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False,
        num_workers=args.num_workers,
    )

    test_recall, test_auc, test_loss = evaluate(
        model, loss_fn, test_dataloader, device
    )

    print(
        "Test Recall: {:.4f} | Test AUC: {:.4f} | Test loss: {:.4f}".format(
            test_recall, test_auc, test_loss
        )
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="GCN-based Anti-Spam Model")
    parser.add_argument(
        "--dataset",
        type=str,
        default="amazon",
        help="DGL dataset for this model (yelp, or amazon)",
    )
    parser.add_argument(
        "--gpu", type=int, default=-1, help="GPU index. Default: -1, using CPU."
    )
    parser.add_argument(
        "--hid_dim", type=int, default=64, help="Hidden layer dimension"
    )
    parser.add_argument(
        "--num_layers", type=int, default=1, help="Number of layers"
    )
    parser.add_argument(
        "--batch_size", type=int, default=256, help="Size of mini-batch"
    )
    parser.add_argument(
        "--max_epoch",
        type=int,
        default=30,
        help="The max number of epochs. Default: 30",
    )
    parser.add_argument(
        "--lr", type=float, default=0.01, help="Learning rate. Default: 0.01"
    )
    parser.add_argument(
        "--weight_decay",
        type=float,
        default=0.001,
        help="Weight decay. Default: 0.001",
    )
    parser.add_argument(
        "--step_size",
        type=float,
        default=0.02,
        help="RL action step size (lambda 2). Default: 0.02",
    )
    parser.add_argument(
        "--sim_weight",
        type=float,
        default=2,
        help="Similarity loss weight (lambda 1). Default: 0.001",
    )
    parser.add_argument(
        "--num_workers", type=int, default=4, help="Number of node dataloader"
    )
    parser.add_argument(
        "--early-stop",
        action="store_true",
        default=False,
        help="indicates whether to use early stop",
    )
274
275

    args = parser.parse_args()
276
    th.manual_seed(717)
277
278
    print(args)
    main(args)