main_sampling.py 8.53 KB
Newer Older
1
2
3
4
import dgl
import argparse
import torch as th
import torch.optim as optim
5
6
from sklearn.metrics import roc_auc_score, recall_score

7
8
9
10
11
12
13
14
15
16
17
from utils import EarlyStopping
from model_sampling import CAREGNN, CARESampler, _l1_dist


def evaluate(model, loss_fn, dataloader, device='cpu'):
    loss = 0
    auc = 0
    recall = 0
    num_blocks = 0
    for input_nodes, output_nodes, blocks in dataloader:
        blocks = [b.to(device) for b in blocks]
18
19
        feature = blocks[0].srcdata['feature']
        label = blocks[-1].dstdata['label']
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
        logits_gnn, logits_sim = model(blocks, feature)

        # compute loss
        loss += loss_fn(logits_gnn, label).item() + args.sim_weight * loss_fn(logits_sim, label).item()
        recall += recall_score(label.cpu(), logits_gnn.argmax(dim=1).detach().cpu())
        auc += roc_auc_score(label.cpu(), logits_gnn[:, 1].detach().cpu())
        num_blocks += 1

    return recall / num_blocks, auc / num_blocks, loss / num_blocks


def main(args):
    # Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
    # Load dataset
    dataset = dgl.data.FraudDataset(args.dataset, train_size=0.4)
    graph = dataset[0]
    num_classes = dataset.num_classes

    # check cuda
    if args.gpu >= 0 and th.cuda.is_available():
        device = 'cuda:{}'.format(args.gpu)
        args.num_workers = 0
    else:
        device = 'cpu'

    # retrieve labels of ground truth
46
    labels = graph.ndata['label'].to(device)
47
48

    # Extract node features
49
    feat = graph.ndata['feature'].to(device)
50
51
52
53
54
55
56
57
58
59
60
61
    layers_feat = feat.expand(args.num_layers, -1, -1)

    # retrieve masks for train/validation/test
    train_mask = graph.ndata['train_mask']
    val_mask = graph.ndata['val_mask']
    test_mask = graph.ndata['test_mask']

    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze(1).to(device)
    val_idx = th.nonzero(val_mask, as_tuple=False).squeeze(1).to(device)
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze(1).to(device)

    # Reinforcement learning module only for positive training nodes
62
    rl_idx = th.nonzero(train_mask.to(device) & labels.bool(), as_tuple=False).squeeze(1)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    graph = graph.to(device)

    # Step 2: Create model =================================================================== #
    model = CAREGNN(in_dim=feat.shape[-1],
                    num_classes=num_classes,
                    hid_dim=args.hid_dim,
                    num_layers=args.num_layers,
                    activation=th.tanh,
                    step_size=args.step_size,
                    edges=graph.canonical_etypes)

    model = model.to(device)

    # Step 3: Create training components ===================================================== #
    _, cnt = th.unique(labels, return_counts=True)
    loss_fn = th.nn.CrossEntropyLoss(weight=1 / cnt)
    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    if args.early_stop:
        stopper = EarlyStopping(patience=100)

    # Step 4: training epochs =============================================================== #
    for epoch in range(args.max_epoch):
        # calculate the distance of each edges and sample based on the distance
        dists = []
        p = []
        for i in range(args.num_layers):
            dist = {}
            graph.ndata['nd'] = th.tanh(model.layers[i].MLP(layers_feat[i]))
            for etype in graph.canonical_etypes:
                graph.apply_edges(_l1_dist, etype=etype)
                dist[etype] = graph.edges[etype].data['ed']
            dists.append(dist)
            p.append(model.layers[i].p)
        sampler = CARESampler(p, dists, args.num_layers)

        # train
        model.train()
        tr_loss = 0
        tr_recall = 0
        tr_auc = 0
        tr_blk = 0
        train_dataloader = dgl.dataloading.NodeDataLoader(graph,
                                                          train_idx,
                                                          sampler,
                                                          batch_size=args.batch_size,
                                                          shuffle=True,
                                                          drop_last=False,
                                                          num_workers=args.num_workers
                                                          )

        for input_nodes, output_nodes, blocks in train_dataloader:
            blocks = [b.to(device) for b in blocks]
116
117
            train_feature = blocks[0].srcdata['feature']
            train_label = blocks[-1].dstdata['label']
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
            logits_gnn, logits_sim = model(blocks, train_feature)

            # compute loss
            blk_loss = loss_fn(logits_gnn, train_label) + args.sim_weight * loss_fn(logits_sim, train_label)
            tr_loss += blk_loss.item()
            tr_recall += recall_score(train_label.cpu(), logits_gnn.argmax(dim=1).detach().cpu())
            tr_auc += roc_auc_score(train_label.cpu(), logits_gnn[:, 1].detach().cpu())
            tr_blk += 1

            # backward
            optimizer.zero_grad()
            blk_loss.backward()
            optimizer.step()

        # Reinforcement learning module
        model.RLModule(graph, epoch, rl_idx, dists)

        # validation
        model.eval()
        val_dataloader = dgl.dataloading.NodeDataLoader(graph,
                                                        val_idx,
                                                        sampler,
                                                        batch_size=args.batch_size,
                                                        shuffle=True,
                                                        drop_last=False,
                                                        num_workers=args.num_workers
                                                        )

        val_recall, val_auc, val_loss = evaluate(model, loss_fn, val_dataloader, device)

        # Print out performance
        print("In epoch {}, Train Recall: {:.4f} | Train AUC: {:.4f} | Train Loss: {:.4f}; "
              "Valid Recall: {:.4f} | Valid AUC: {:.4f} | Valid loss: {:.4f}".
              format(epoch, tr_recall / tr_blk, tr_auc / tr_blk, tr_loss / tr_blk, val_recall, val_auc, val_loss))

        if args.early_stop:
            if stopper.step(val_auc, model):
                break

    # Test with mini batch after all epoch
    model.eval()
    if args.early_stop:
        model.load_state_dict(th.load('es_checkpoint.pt'))
    test_dataloader = dgl.dataloading.NodeDataLoader(graph,
                                                     test_idx,
                                                     sampler,
                                                     batch_size=args.batch_size,
                                                     shuffle=True,
                                                     drop_last=False,
                                                     num_workers=args.num_workers
                                                     )

    test_recall, test_auc, test_loss = evaluate(model, loss_fn, test_dataloader, device)

    print("Test Recall: {:.4f} | Test AUC: {:.4f} | Test loss: {:.4f}".format(test_recall, test_auc, test_loss))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN-based Anti-Spam Model')
    parser.add_argument("--dataset", type=str, default="amazon", help="DGL dataset for this model (yelp, or amazon)")
    parser.add_argument("--gpu", type=int, default=-1, help="GPU index. Default: -1, using CPU.")
    parser.add_argument("--hid_dim", type=int, default=64, help="Hidden layer dimension")
    parser.add_argument("--num_layers", type=int, default=1, help="Number of layers")
    parser.add_argument("--batch_size", type=int, default=256, help="Size of mini-batch")
    parser.add_argument("--max_epoch", type=int, default=30, help="The max number of epochs. Default: 30")
    parser.add_argument("--lr", type=float, default=0.01, help="Learning rate. Default: 0.01")
    parser.add_argument("--weight_decay", type=float, default=0.001, help="Weight decay. Default: 0.001")
    parser.add_argument("--step_size", type=float, default=0.02, help="RL action step size (lambda 2). Default: 0.02")
    parser.add_argument("--sim_weight", type=float, default=2, help="Similarity loss weight (lambda 1). Default: 0.001")
    parser.add_argument("--num_workers", type=int, default=4, help="Number of node dataloader")
188
    parser.add_argument('--early-stop', action='store_true', default=False, help="indicates whether to use early stop")
189
190

    args = parser.parse_args()
191
    th.manual_seed(717)
192
193
    print(args)
    main(args)