BGNN.py 17.3 KB
Newer Older
1
2
3
import itertools
import time
from collections import defaultdict as ddict
4
5

import numpy as np
6
import pandas as pd
7
import torch
8
import torch.nn.functional as F
9
10
from catboost import CatBoostClassifier, CatBoostRegressor, Pool, sum_models
from sklearn import preprocessing
11
from sklearn.metrics import r2_score
12
13
from tqdm import tqdm

14
15

class BGNNPredictor:
16
    """
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    Description
    -----------
    Boost GNN predictor for semi-supervised node classification or regression problems.
    Publication: https://arxiv.org/abs/2101.08543

    Parameters
    ----------
    gnn_model : nn.Module
        DGL implementation of GNN model.
    task: str, optional
        Regression or classification task.
    loss_fn : callable, optional
        Function that takes torch tensors, pred and true, and returns a scalar.
    trees_per_epoch : int, optional
        Number of GBDT trees to build each epoch.
    backprop_per_epoch : int, optional
        Number of backpropagation steps to make each epoch.
    lr : float, optional
        Learning rate of gradient descent optimizer.
    append_gbdt_pred : bool, optional
        Append GBDT predictions or replace original input node features.
    train_input_features : bool, optional
        Train original input node features.
    gbdt_depth : int, optional
        Depth of each tree in GBDT model.
    gbdt_lr : float, optional
        Learning rate of GBDT model.
    gbdt_alpha : int, optional
        Weight to combine previous and new GBDT trees.
    random_seed : int, optional
        random seed for GNN and GBDT models.

    Examples
    ----------
    gnn_model = GAT(10, 20, num_heads=5),
    bgnn = BGNNPredictor(gnn_model)
    metrics = bgnn.fit(graph, X, y, train_mask, val_mask, test_mask, cat_features)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    """

    def __init__(
        self,
        gnn_model,
        task="regression",
        loss_fn=None,
        trees_per_epoch=10,
        backprop_per_epoch=10,
        lr=0.01,
        append_gbdt_pred=True,
        train_input_features=False,
        gbdt_depth=6,
        gbdt_lr=0.1,
        gbdt_alpha=1,
        random_seed=0,
    ):
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu"
        )
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

        self.model = gnn_model.to(self.device)
        self.task = task
        self.loss_fn = loss_fn
        self.trees_per_epoch = trees_per_epoch
        self.backprop_per_epoch = backprop_per_epoch
        self.lr = lr
        self.append_gbdt_pred = append_gbdt_pred
        self.train_input_features = train_input_features
        self.gbdt_depth = gbdt_depth
        self.gbdt_lr = gbdt_lr
        self.gbdt_alpha = gbdt_alpha
        self.random_seed = random_seed
        torch.manual_seed(random_seed)
        np.random.seed(random_seed)

    def init_gbdt_model(self, num_epochs, epoch):
91
        if self.task == "regression":
92
            catboost_model_obj = CatBoostRegressor
93
            catboost_loss_fn = "RMSE"
94
        else:
95
            if epoch == 0:  # we predict multiclass probs at first epoch
96
                catboost_model_obj = CatBoostClassifier
97
98
                catboost_loss_fn = "MultiClass"
            else:  # we predict the gradients for each class at epochs > 0
99
                catboost_model_obj = CatBoostRegressor
100
101
102
103
104
105
106
107
108
109
                catboost_loss_fn = "MultiRMSE"

        return catboost_model_obj(
            iterations=num_epochs,
            depth=self.gbdt_depth,
            learning_rate=self.gbdt_lr,
            loss_function=catboost_loss_fn,
            random_seed=self.random_seed,
            nan_mode="Min",
        )
110
111
112
113
114
115
116
117
118
119
120

    def fit_gbdt(self, pool, trees_per_epoch, epoch):
        gbdt_model = self.init_gbdt_model(trees_per_epoch, epoch)
        gbdt_model.fit(pool, verbose=False)
        return gbdt_model

    def append_gbdt_model(self, new_gbdt_model, weights):
        if self.gbdt_model is None:
            return new_gbdt_model
        return sum_models([self.gbdt_model, new_gbdt_model], weights=weights)

121
122
123
124
125
126
127
128
129
    def train_gbdt(
        self,
        gbdt_X_train,
        gbdt_y_train,
        cat_features,
        epoch,
        gbdt_trees_per_epoch,
        gbdt_alpha,
    ):
130
131
        pool = Pool(gbdt_X_train, gbdt_y_train, cat_features=cat_features)
        epoch_gbdt_model = self.fit_gbdt(pool, gbdt_trees_per_epoch, epoch)
132
        if epoch == 0 and self.task == "classification":
133
134
            self.base_gbdt = epoch_gbdt_model
        else:
135
136
137
            self.gbdt_model = self.append_gbdt_model(
                epoch_gbdt_model, weights=[1, gbdt_alpha]
            )
138
139
140

    def update_node_features(self, node_features, X, original_X):
        # get predictions from gbdt model
141
142
143
144
        if self.task == "regression":
            predictions = np.expand_dims(
                self.gbdt_model.predict(original_X), axis=1
            )
145
146
147
148
149
150
151
152
153
        else:
            predictions = self.base_gbdt.predict_proba(original_X)
            if self.gbdt_model is not None:
                predictions_after_one = self.gbdt_model.predict(original_X)
                predictions += predictions_after_one

        # update node features with predictions
        if self.append_gbdt_pred:
            if self.train_input_features:
154
155
156
157
158
                predictions = np.append(
                    node_features.detach().cpu().data[:, : -self.out_dim],
                    predictions,
                    axis=1,
                )  # replace old predictions with new predictions
159
            else:
160
161
162
                predictions = np.append(
                    X, predictions, axis=1
                )  # append original features with new predictions
163
164
165
166
167

        predictions = torch.from_numpy(predictions).to(self.device)

        node_features.data = predictions.float().data

168
169
170
171
172
173
174
175
176
    def update_gbdt_targets(
        self, node_features, node_features_before, train_mask
    ):
        return (
            (node_features - node_features_before)
            .detach()
            .cpu()
            .numpy()[train_mask, -self.out_dim :]
        )
177
178

    def init_node_features(self, X):
179
180
181
        node_features = torch.empty(
            X.shape[0], self.in_dim, requires_grad=True, device=self.device
        )
182
        if self.append_gbdt_pred:
183
184
185
            node_features.data[:, : -self.out_dim] = torch.from_numpy(
                X.to_numpy(copy=True)
            )
186
187
        return node_features

188
189
190
    def init_optimizer(
        self, node_features, optimize_node_features, learning_rate
    ):
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        params = [self.model.parameters()]
        if optimize_node_features:
            params.append([node_features])
        optimizer = torch.optim.Adam(itertools.chain(*params), lr=learning_rate)
        return optimizer

    def train_model(self, model_in, target_labels, train_mask, optimizer):
        y = target_labels[train_mask]

        self.model.train()
        logits = self.model(*model_in).squeeze()
        pred = logits[train_mask]

        if self.loss_fn is not None:
            loss = self.loss_fn(pred, y)
        else:
207
            if self.task == "regression":
208
                loss = torch.sqrt(F.mse_loss(pred, y))
209
            elif self.task == "classification":
210
211
                loss = F.cross_entropy(pred, y.long())
            else:
212
213
214
                raise NotImplemented(
                    "Unknown task. Supported tasks: classification, regression."
                )
215
216
217
218
219
220
221
222
223
224
225

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        return loss

    def evaluate_model(self, logits, target_labels, mask):
        metrics = {}
        y = target_labels[mask]
        with torch.no_grad():
            pred = logits[mask]
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
            if self.task == "regression":
                metrics["loss"] = torch.sqrt(
                    F.mse_loss(pred, y).squeeze() + 1e-8
                )
                metrics["rmsle"] = torch.sqrt(
                    F.mse_loss(torch.log(pred + 1), torch.log(y + 1)).squeeze()
                    + 1e-8
                )
                metrics["mae"] = F.l1_loss(pred, y)
                metrics["r2"] = torch.Tensor(
                    [r2_score(y.cpu().numpy(), pred.cpu().numpy())]
                )
            elif self.task == "classification":
                metrics["loss"] = F.cross_entropy(pred, y.long())
                metrics["accuracy"] = torch.Tensor(
                    [(y == pred.max(1)[1]).sum().item() / y.shape[0]]
                )
243
244
245

            return metrics

246
247
248
249
250
251
252
253
254
255
256
    def train_and_evaluate(
        self,
        model_in,
        target_labels,
        train_mask,
        val_mask,
        test_mask,
        optimizer,
        metrics,
        gnn_passes_per_epoch,
    ):
257
258
259
        loss = None

        for _ in range(gnn_passes_per_epoch):
260
261
262
            loss = self.train_model(
                model_in, target_labels, train_mask, optimizer
            )
263
264
265
266
267
268
269

        self.model.eval()
        logits = self.model(*model_in).squeeze()
        train_results = self.evaluate_model(logits, target_labels, train_mask)
        val_results = self.evaluate_model(logits, target_labels, val_mask)
        test_results = self.evaluate_model(logits, target_labels, test_mask)
        for metric_name in train_results:
270
271
272
273
274
275
276
            metrics[metric_name].append(
                (
                    train_results[metric_name].detach().item(),
                    val_results[metric_name].detach().item(),
                    test_results[metric_name].detach().item(),
                )
            )
277
278
        return loss

279
280
281
282
283
284
285
286
287
288
    def update_early_stopping(
        self,
        metrics,
        epoch,
        best_metric,
        best_val_epoch,
        epochs_since_last_best_metric,
        metric_name,
        lower_better=False,
    ):
289
        train_metric, val_metric, test_metric = metrics[metric_name][-1]
290
291
292
        if (lower_better and val_metric < best_metric[1]) or (
            not lower_better and val_metric > best_metric[1]
        ):
293
294
295
296
297
298
299
            best_metric = metrics[metric_name][-1]
            best_val_epoch = epoch
            epochs_since_last_best_metric = 0
        else:
            epochs_since_last_best_metric += 1
        return best_metric, best_val_epoch, epochs_since_last_best_metric

300
301
302
303
304
305
306
307
308
309
    def log_epoch(
        self,
        pbar,
        metrics,
        epoch,
        loss,
        epoch_time,
        logging_epochs,
        metric_name="loss",
    ):
310
311
312
        train_metric, val_metric, test_metric = metrics[metric_name][-1]
        if epoch and epoch % logging_epochs == 0:
            pbar.set_description(
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
                "Epoch {:05d} | Loss {:.3f} | Loss {:.3f}/{:.3f}/{:.3f} | Time {:.4f}".format(
                    epoch,
                    loss,
                    train_metric,
                    val_metric,
                    test_metric,
                    epoch_time,
                )
            )

    def fit(
        self,
        graph,
        X,
        y,
        train_mask,
        val_mask,
        test_mask,
        original_X=None,
        cat_features=None,
        num_epochs=100,
        patience=10,
        logging_epochs=1,
        metric_name="loss",
    ):
        """
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

        :param graph : dgl.DGLGraph
            Input graph
        :param X : pd.DataFrame
            Input node features. Each column represents one input feature. Each row is a node.
            Values in dataframe are numerical, after preprocessing.
        :param y : pd.DataFrame
            Input node targets. Each column represents one target. Each row is a node
            (order of nodes should be the same as in X).
        :param train_mask : list[int]
            Node indexes (rows) that belong to train set.
        :param val_mask : list[int]
            Node indexes (rows) that belong to validation set.
        :param test_mask : list[int]
            Node indexes (rows) that belong to test set.
        :param original_X : pd.DataFrame, optional
            Input node features before preprocessing. Each column represents one input feature. Each row is a node.
            Values in dataframe can be of any type, including categorical (e.g. string, bool) or
            missing values (None). This is useful if you want to preprocess X with GBDT model.
        :param cat_features: list[int]
            Feature indexes (columns) which are categorical features.
        :param num_epochs : int
            Number of epochs to run.
        :param patience : int
            Number of epochs to wait until early stopping.
        :param logging_epochs : int
            Log every n epoch.
        :param metric_name : str
            Metric to use for early stopping.
        :param normalize_features : bool
            If to normalize original input features X (column wise).
        :param replace_na: bool
            If to replace missing values (None) in X.
        :return: metrics evaluated during training
373
        """
374
375

        # initialize for early stopping and metrics
376
377
        if metric_name in ["r2", "accuracy"]:
            best_metric = [np.float("-inf")] * 3  # for train/val/test
378
        else:
379
            best_metric = [np.float("inf")] * 3  # for train/val/test
380
381
382
383
384
385
386

        best_val_epoch = 0
        epochs_since_last_best_metric = 0
        metrics = ddict(list)
        if cat_features is None:
            cat_features = []

387
        if self.task == "regression":
388
            self.out_dim = y.shape[1]
389
        elif self.task == "classification":
390
            self.out_dim = len(set(y.iloc[test_mask, 0]))
391
392
393
        self.in_dim = (
            self.out_dim + X.shape[1] if self.append_gbdt_pred else self.out_dim
        )
394
395
396
397
398
399
400
401
402
403
404

        if original_X is None:
            original_X = X.copy()
            cat_features = []

        gbdt_X_train = original_X.iloc[train_mask]
        gbdt_y_train = y.iloc[train_mask]
        gbdt_alpha = self.gbdt_alpha
        self.gbdt_model = None

        node_features = self.init_node_features(X)
405
406
407
        optimizer = self.init_optimizer(
            node_features, optimize_node_features=True, learning_rate=self.lr
        )
408

409
410
411
412
413
414
        y = (
            torch.from_numpy(y.to_numpy(copy=True))
            .float()
            .squeeze()
            .to(self.device)
        )
415
416
417
418
419
420
421
        graph = graph.to(self.device)

        pbar = tqdm(range(num_epochs))
        for epoch in pbar:
            start2epoch = time.time()

            # gbdt part
422
423
424
425
426
427
428
429
            self.train_gbdt(
                gbdt_X_train,
                gbdt_y_train,
                cat_features,
                epoch,
                self.trees_per_epoch,
                gbdt_alpha,
            )
430
431
432

            self.update_node_features(node_features, X, original_X)
            node_features_before = node_features.clone()
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
            model_in = (graph, node_features)
            loss = self.train_and_evaluate(
                model_in,
                y,
                train_mask,
                val_mask,
                test_mask,
                optimizer,
                metrics,
                self.backprop_per_epoch,
            )
            gbdt_y_train = self.update_gbdt_targets(
                node_features, node_features_before, train_mask
            )

            self.log_epoch(
                pbar,
                metrics,
                epoch,
                loss,
                time.time() - start2epoch,
                logging_epochs,
                metric_name=metric_name,
            )
457
458

            # check early stopping
459
460
461
462
463
464
465
466
467
468
469
470
471
            (
                best_metric,
                best_val_epoch,
                epochs_since_last_best_metric,
            ) = self.update_early_stopping(
                metrics,
                epoch,
                best_metric,
                best_val_epoch,
                epochs_since_last_best_metric,
                metric_name,
                lower_better=(metric_name not in ["r2", "accuracy"]),
            )
472
473
474
            if patience and epochs_since_last_best_metric > patience:
                break

475
476
            if np.isclose(gbdt_y_train.sum(), 0.0):
                print("Node embeddings do not change anymore. Stopping...")
477
478
                break

479
480
481
482
483
        print(
            "Best {} at iteration {}: {:.3f}/{:.3f}/{:.3f}".format(
                metric_name, best_val_epoch, *best_metric
            )
        )
484
485
486
487
488
489
490
        return metrics

    def predict(self, graph, X, test_mask):
        graph = graph.to(self.device)
        node_features = torch.empty(X.shape[0], self.in_dim).to(self.device)
        self.update_node_features(node_features, X, X)
        logits = self.model(graph, node_features).squeeze()
491
        if self.task == "regression":
492
493
494
495
            return logits[test_mask]
        else:
            return logits[test_mask].max(1)[1]

496
497
498
499
500
501
502
503
504
505
    def plot_interactive(
        self,
        metrics,
        legend,
        title,
        logx=False,
        logy=False,
        metric_name="loss",
        start_from=0,
    ):
506
        import plotly.graph_objects as go
507

508
509
510
511
512
513
        metric_results = metrics[metric_name]
        xs = [list(range(len(metric_results)))] * len(metric_results[0])
        ys = list(zip(*metric_results))

        fig = go.Figure()
        for i in range(len(ys)):
514
515
516
517
518
519
520
521
            fig.add_trace(
                go.Scatter(
                    x=xs[i][start_from:],
                    y=ys[i][start_from:],
                    mode="lines+markers",
                    name=legend[i],
                )
            )
522
523
524
525

        fig.update_layout(
            title=title,
            title_x=0.5,
526
            xaxis_title="Epoch",
527
528
529
530
531
532
533
534
535
536
537
538
            yaxis_title=metric_name,
            font=dict(
                size=40,
            ),
            height=600,
        )

        if logx:
            fig.update_layout(xaxis_type="log")
        if logy:
            fig.update_layout(yaxis_type="log")

539
        fig.show()