BGNN.py 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import itertools
import time
import numpy as np
import torch

from catboost import Pool, CatBoostClassifier, CatBoostRegressor, sum_models
from tqdm import tqdm
from collections import defaultdict as ddict
import pandas as pd
from sklearn import preprocessing
import torch.nn.functional as F
from sklearn.metrics import r2_score

class BGNNPredictor:
    '''
    Description
    -----------
    Boost GNN predictor for semi-supervised node classification or regression problems.
    Publication: https://arxiv.org/abs/2101.08543

    Parameters
    ----------
    gnn_model : nn.Module
        DGL implementation of GNN model.
    task: str, optional
        Regression or classification task.
    loss_fn : callable, optional
        Function that takes torch tensors, pred and true, and returns a scalar.
    trees_per_epoch : int, optional
        Number of GBDT trees to build each epoch.
    backprop_per_epoch : int, optional
        Number of backpropagation steps to make each epoch.
    lr : float, optional
        Learning rate of gradient descent optimizer.
    append_gbdt_pred : bool, optional
        Append GBDT predictions or replace original input node features.
    train_input_features : bool, optional
        Train original input node features.
    gbdt_depth : int, optional
        Depth of each tree in GBDT model.
    gbdt_lr : float, optional
        Learning rate of GBDT model.
    gbdt_alpha : int, optional
        Weight to combine previous and new GBDT trees.
    random_seed : int, optional
        random seed for GNN and GBDT models.

    Examples
    ----------
    gnn_model = GAT(10, 20, num_heads=5),
    bgnn = BGNNPredictor(gnn_model)
    metrics = bgnn.fit(graph, X, y, train_mask, val_mask, test_mask, cat_features)
    '''
    def __init__(self,
                 gnn_model,
                 task = 'regression',
                 loss_fn = None,
                 trees_per_epoch = 10,
                 backprop_per_epoch = 10,
                 lr=0.01,
                 append_gbdt_pred = True,
                 train_input_features = False,
                 gbdt_depth=6,
                 gbdt_lr=0.1,
                 gbdt_alpha = 1,
                 random_seed = 0
                 ):
        self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

        self.model = gnn_model.to(self.device)
        self.task = task
        self.loss_fn = loss_fn
        self.trees_per_epoch = trees_per_epoch
        self.backprop_per_epoch = backprop_per_epoch
        self.lr = lr
        self.append_gbdt_pred = append_gbdt_pred
        self.train_input_features = train_input_features
        self.gbdt_depth = gbdt_depth
        self.gbdt_lr = gbdt_lr
        self.gbdt_alpha = gbdt_alpha
        self.random_seed = random_seed
        torch.manual_seed(random_seed)
        np.random.seed(random_seed)

    def init_gbdt_model(self, num_epochs, epoch):
        if self.task == 'regression':
            catboost_model_obj = CatBoostRegressor
            catboost_loss_fn = 'RMSE'
        else:
            if epoch == 0: # we predict multiclass probs at first epoch
                catboost_model_obj = CatBoostClassifier
                catboost_loss_fn = 'MultiClass'
            else: # we predict the gradients for each class at epochs > 0
                catboost_model_obj = CatBoostRegressor
                catboost_loss_fn = 'MultiRMSE'

        return catboost_model_obj(iterations=num_epochs,
                                  depth=self.gbdt_depth,
                                  learning_rate=self.gbdt_lr,
                                  loss_function=catboost_loss_fn,
                                  random_seed=self.random_seed,
                                  nan_mode='Min')

    def fit_gbdt(self, pool, trees_per_epoch, epoch):
        gbdt_model = self.init_gbdt_model(trees_per_epoch, epoch)
        gbdt_model.fit(pool, verbose=False)
        return gbdt_model

    def append_gbdt_model(self, new_gbdt_model, weights):
        if self.gbdt_model is None:
            return new_gbdt_model
        return sum_models([self.gbdt_model, new_gbdt_model], weights=weights)

    def train_gbdt(self, gbdt_X_train, gbdt_y_train, cat_features, epoch,
                   gbdt_trees_per_epoch, gbdt_alpha):
        pool = Pool(gbdt_X_train, gbdt_y_train, cat_features=cat_features)
        epoch_gbdt_model = self.fit_gbdt(pool, gbdt_trees_per_epoch, epoch)
        if epoch == 0 and self.task=='classification':
            self.base_gbdt = epoch_gbdt_model
        else:
            self.gbdt_model = self.append_gbdt_model(epoch_gbdt_model, weights=[1, gbdt_alpha])

    def update_node_features(self, node_features, X, original_X):
        # get predictions from gbdt model
        if self.task == 'regression':
            predictions = np.expand_dims(self.gbdt_model.predict(original_X), axis=1)
        else:
            predictions = self.base_gbdt.predict_proba(original_X)
            if self.gbdt_model is not None:
                predictions_after_one = self.gbdt_model.predict(original_X)
                predictions += predictions_after_one

        # update node features with predictions
        if self.append_gbdt_pred:
            if self.train_input_features:
                predictions = np.append(node_features.detach().cpu().data[:, :-self.out_dim],
                                        predictions,
                                        axis=1)  # replace old predictions with new predictions
            else:
                predictions = np.append(X, predictions, axis=1)  # append original features with new predictions

        predictions = torch.from_numpy(predictions).to(self.device)

        node_features.data = predictions.float().data

    def update_gbdt_targets(self, node_features, node_features_before, train_mask):
        return (node_features - node_features_before).detach().cpu().numpy()[train_mask, -self.out_dim:]

    def init_node_features(self, X):
        node_features = torch.empty(X.shape[0], self.in_dim, requires_grad=True, device=self.device)
        if self.append_gbdt_pred:
            node_features.data[:, :-self.out_dim] = torch.from_numpy(X.to_numpy(copy=True))
        return node_features

    def init_optimizer(self, node_features, optimize_node_features, learning_rate):

        params = [self.model.parameters()]
        if optimize_node_features:
            params.append([node_features])
        optimizer = torch.optim.Adam(itertools.chain(*params), lr=learning_rate)
        return optimizer

    def train_model(self, model_in, target_labels, train_mask, optimizer):
        y = target_labels[train_mask]

        self.model.train()
        logits = self.model(*model_in).squeeze()
        pred = logits[train_mask]

        if self.loss_fn is not None:
            loss = self.loss_fn(pred, y)
        else:
            if self.task == 'regression':
                loss = torch.sqrt(F.mse_loss(pred, y))
            elif self.task == 'classification':
                loss = F.cross_entropy(pred, y.long())
            else:
                raise NotImplemented("Unknown task. Supported tasks: classification, regression.")

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        return loss

    def evaluate_model(self, logits, target_labels, mask):
        metrics = {}
        y = target_labels[mask]
        with torch.no_grad():
            pred = logits[mask]
            if self.task == 'regression':
                metrics['loss'] = torch.sqrt(F.mse_loss(pred, y).squeeze() + 1e-8)
                metrics['rmsle'] = torch.sqrt(F.mse_loss(torch.log(pred + 1), torch.log(y + 1)).squeeze() + 1e-8)
                metrics['mae'] = F.l1_loss(pred, y)
                metrics['r2'] = torch.Tensor([r2_score(y.cpu().numpy(), pred.cpu().numpy())])
            elif self.task == 'classification':
                metrics['loss'] = F.cross_entropy(pred, y.long())
                metrics['accuracy'] = torch.Tensor([(y == pred.max(1)[1]).sum().item()/y.shape[0]])

            return metrics


    def train_and_evaluate(self, model_in, target_labels, train_mask, val_mask, test_mask,
                           optimizer, metrics, gnn_passes_per_epoch):
        loss = None

        for _ in range(gnn_passes_per_epoch):
            loss = self.train_model(model_in, target_labels, train_mask, optimizer)

        self.model.eval()
        logits = self.model(*model_in).squeeze()
        train_results = self.evaluate_model(logits, target_labels, train_mask)
        val_results = self.evaluate_model(logits, target_labels, val_mask)
        test_results = self.evaluate_model(logits, target_labels, test_mask)
        for metric_name in train_results:
            metrics[metric_name].append((train_results[metric_name].detach().item(),
                               val_results[metric_name].detach().item(),
                               test_results[metric_name].detach().item()
                               ))
        return loss

    def update_early_stopping(self, metrics, epoch, best_metric, best_val_epoch, epochs_since_last_best_metric, metric_name,
                              lower_better=False):
        train_metric, val_metric, test_metric = metrics[metric_name][-1]
        if (lower_better and val_metric < best_metric[1]) or (not lower_better and val_metric > best_metric[1]):
            best_metric = metrics[metric_name][-1]
            best_val_epoch = epoch
            epochs_since_last_best_metric = 0
        else:
            epochs_since_last_best_metric += 1
        return best_metric, best_val_epoch, epochs_since_last_best_metric

    def log_epoch(self, pbar, metrics, epoch, loss, epoch_time, logging_epochs, metric_name='loss'):
        train_metric, val_metric, test_metric = metrics[metric_name][-1]
        if epoch and epoch % logging_epochs == 0:
            pbar.set_description(
                "Epoch {:05d} | Loss {:.3f} | Loss {:.3f}/{:.3f}/{:.3f} | Time {:.4f}".format(epoch, loss,
                                                                                              train_metric,
                                                                                              val_metric,
                                                                                              test_metric,
                                                                                              epoch_time))

    def fit(self, graph, X, y,
            train_mask, val_mask, test_mask,
            original_X = None,
            cat_features = None,
            num_epochs=100,
            patience=10,
            logging_epochs=1,
            metric_name='loss',
            ):
        '''

        :param graph : dgl.DGLGraph
            Input graph
        :param X : pd.DataFrame
            Input node features. Each column represents one input feature. Each row is a node.
            Values in dataframe are numerical, after preprocessing.
        :param y : pd.DataFrame
            Input node targets. Each column represents one target. Each row is a node
            (order of nodes should be the same as in X).
        :param train_mask : list[int]
            Node indexes (rows) that belong to train set.
        :param val_mask : list[int]
            Node indexes (rows) that belong to validation set.
        :param test_mask : list[int]
            Node indexes (rows) that belong to test set.
        :param original_X : pd.DataFrame, optional
            Input node features before preprocessing. Each column represents one input feature. Each row is a node.
            Values in dataframe can be of any type, including categorical (e.g. string, bool) or
            missing values (None). This is useful if you want to preprocess X with GBDT model.
        :param cat_features: list[int]
            Feature indexes (columns) which are categorical features.
        :param num_epochs : int
            Number of epochs to run.
        :param patience : int
            Number of epochs to wait until early stopping.
        :param logging_epochs : int
            Log every n epoch.
        :param metric_name : str
            Metric to use for early stopping.
        :param normalize_features : bool
            If to normalize original input features X (column wise).
        :param replace_na: bool
            If to replace missing values (None) in X.
        :return: metrics evaluated during training
        '''

        # initialize for early stopping and metrics
        if metric_name in ['r2', 'accuracy']:
            best_metric = [np.float('-inf')] * 3  # for train/val/test
        else:
            best_metric = [np.float('inf')] * 3  # for train/val/test

        best_val_epoch = 0
        epochs_since_last_best_metric = 0
        metrics = ddict(list)
        if cat_features is None:
            cat_features = []

        if self.task == 'regression':
            self.out_dim = y.shape[1]
        elif self.task == 'classification':
            self.out_dim = len(set(y.iloc[test_mask, 0]))
        self.in_dim = self.out_dim + X.shape[1] if self.append_gbdt_pred else self.out_dim

        if original_X is None:
            original_X = X.copy()
            cat_features = []

        gbdt_X_train = original_X.iloc[train_mask]
        gbdt_y_train = y.iloc[train_mask]
        gbdt_alpha = self.gbdt_alpha
        self.gbdt_model = None

        node_features = self.init_node_features(X)
        optimizer = self.init_optimizer(node_features, optimize_node_features=True, learning_rate=self.lr)

        y = torch.from_numpy(y.to_numpy(copy=True)).float().squeeze().to(self.device)
        graph = graph.to(self.device)

        pbar = tqdm(range(num_epochs))
        for epoch in pbar:
            start2epoch = time.time()

            # gbdt part
            self.train_gbdt(gbdt_X_train, gbdt_y_train, cat_features, epoch,
                            self.trees_per_epoch, gbdt_alpha)

            self.update_node_features(node_features, X, original_X)
            node_features_before = node_features.clone()
            model_in=(graph, node_features)
            loss = self.train_and_evaluate(model_in, y, train_mask, val_mask, test_mask,
                                           optimizer, metrics, self.backprop_per_epoch)
            gbdt_y_train = self.update_gbdt_targets(node_features, node_features_before, train_mask)

            self.log_epoch(pbar, metrics, epoch, loss, time.time() - start2epoch, logging_epochs,
                           metric_name=metric_name)

            # check early stopping
            best_metric, best_val_epoch, epochs_since_last_best_metric = \
                self.update_early_stopping(metrics, epoch, best_metric, best_val_epoch, epochs_since_last_best_metric,
                                           metric_name, lower_better=(metric_name not in ['r2', 'accuracy']))
            if patience and epochs_since_last_best_metric > patience:
                break

            if np.isclose(gbdt_y_train.sum(), 0.):
                print('Node embeddings do not change anymore. Stopping...')
                break

        print('Best {} at iteration {}: {:.3f}/{:.3f}/{:.3f}'.format(metric_name, best_val_epoch, *best_metric))
        return metrics

    def predict(self, graph, X, test_mask):
        graph = graph.to(self.device)
        node_features = torch.empty(X.shape[0], self.in_dim).to(self.device)
        self.update_node_features(node_features, X, X)
        logits = self.model(graph, node_features).squeeze()
        if self.task == 'regression':
            return logits[test_mask]
        else:
            return logits[test_mask].max(1)[1]

    def plot_interactive(self, metrics, legend, title, logx=False, logy=False, metric_name='loss', start_from=0):
        import plotly.graph_objects as go
        metric_results = metrics[metric_name]
        xs = [list(range(len(metric_results)))] * len(metric_results[0])
        ys = list(zip(*metric_results))

        fig = go.Figure()
        for i in range(len(ys)):
            fig.add_trace(go.Scatter(x=xs[i][start_from:], y=ys[i][start_from:],
                                     mode='lines+markers',
                                     name=legend[i]))

        fig.update_layout(
            title=title,
            title_x=0.5,
            xaxis_title='Epoch',
            yaxis_title=metric_name,
            font=dict(
                size=40,
            ),
            height=600,
        )

        if logx:
            fig.update_layout(xaxis_type="log")
        if logy:
            fig.update_layout(yaxis_type="log")

        fig.show()