test_new_update_all_hetero.py 11.3 KB
Newer Older
1
2
3
4
5
6
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
7
from itertools import product
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import backend as F
import networkx as nx
import unittest, pytest
from dgl import DGLError
import test_utils
from test_utils import parametrize_dtype, get_cases
from scipy.sparse import rand
rfuncs = {'sum': fn.sum, 'max': fn.max, 'min': fn.min, 'mean': fn.mean}
feat_size = 2

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')

def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

    g = dgl.heterograph({
        ('user', 'follows', 'user'):  ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 1, 1], [0, 0, 1]),
        ('developer', 'develops', 'game'): ([0, 1, 0], [0, 1, 1]),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

39
40
def create_test_heterograph_2(idtype):

41
42
43
44
45
46
    src = np.random.randint(0, 50, 25)
    dst = np.random.randint(0, 50, 25)
    src1 = np.random.randint(0, 25, 10)
    dst1 = np.random.randint(0, 25, 10)
    src2 = np.random.randint(0, 100, 1000)
    dst2 = np.random.randint(0, 100, 1000)
47
48
49
50
    g = dgl.heterograph({
        ('user', 'becomes', 'player'):  (src, dst),
        ('user', 'follows', 'user'):  (src, dst),
        ('user', 'plays', 'game'): (src, dst),
51
52
        ('user', 'wishes', 'game'): (src1, dst1),
        ('developer', 'develops', 'game'): (src2, dst2),
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

def create_test_heterograph_large(idtype):

    src = np.random.randint(0, 50, 2500)
    dst = np.random.randint(0, 50, 2500)
    g = dgl.heterograph({
        ('user', 'follows', 'user'):  (src, dst),
        ('user', 'plays', 'game'): (src, dst),
        ('user', 'wishes', 'game'): (src, dst),
        ('developer', 'develops', 'game'): (src, dst),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

72
73
74
@parametrize_dtype
def test_unary_copy_u(idtype):
    def _test(mfunc, rfunc):
75
76
77
78
        g = create_test_heterograph_2(idtype)
        g0 = create_test_heterograph(idtype)
        g1 = create_test_heterograph_large(idtype)
        cross_reducer = rfunc.__name__
79
80
81
82
83
84
85
86
87
88
89
90
91
        x1 = F.randn((g.num_nodes('user'), feat_size))
        x2 = F.randn((g.num_nodes('developer'), feat_size))
        F.attach_grad(x1)
        F.attach_grad(x2)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2

        #################################################################
        #  multi_update_all(): call msg_passing separately for each etype
        #################################################################

        with F.record_grad():
            g.multi_update_all(
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
                {etype : (mfunc('h', 'm'), rfunc('m', 'y'))
                    for etype in g.canonical_etypes},
                cross_reducer)
            r1 = g.nodes['game'].data['y'].clone()
            r2 = g.nodes['user'].data['y'].clone()
            r3 = g.nodes['player'].data['y'].clone()
            loss = r1.sum() + r2.sum() + r3.sum()
            F.backward(loss)
            n_grad1 = F.grad(g.nodes['user'].data['h']).clone()
            n_grad2 = F.grad(g.nodes['developer'].data['h']).clone()

        g.nodes['user'].data.clear()
        g.nodes['developer'].data.clear()
        g.nodes['game'].data.clear()
        g.nodes['player'].data.clear()
107
108
109
110
111

        #################################################################
        #  update_all(): call msg_passing for all etypes
        #################################################################

112
113
114
115
        F.attach_grad(x1)
        F.attach_grad(x2)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2
116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        with F.record_grad():
            g.update_all(mfunc('h', 'm'), rfunc('m', 'y'))
            r4 = g.nodes['game'].data['y']
            r5 = g.nodes['user'].data['y']
            r6 = g.nodes['player'].data['y']
            loss = r4.sum() + r5.sum() + r6.sum()
            F.backward(loss)
            n_grad3 = F.grad(g.nodes['user'].data['h'])
            n_grad4 = F.grad(g.nodes['developer'].data['h'])

        assert F.allclose(r1, r4)
        assert F.allclose(r2, r5)
        assert F.allclose(r3, r6)
        assert(F.allclose(n_grad1, n_grad3))
        assert(F.allclose(n_grad2, n_grad4))
132
    _test(fn.copy_u, fn.sum)
133
134
    _test(fn.copy_u, fn.max)
    _test(fn.copy_u, fn.min)
135
136
137
138
139
140
    # _test('copy_u', 'mean')

@parametrize_dtype
def test_unary_copy_e(idtype):
    def _test(mfunc, rfunc):

141
142
143
144
145
146
147
148
        g = create_test_heterograph_large(idtype)
        g0 = create_test_heterograph_2(idtype)
        g1 = create_test_heterograph(idtype)
        cross_reducer = rfunc.__name__
        x1 = F.randn((g.num_edges('plays'),feat_size))
        x2 = F.randn((g.num_edges('follows'),feat_size))
        x3 = F.randn((g.num_edges('develops'),feat_size))
        x4 = F.randn((g.num_edges('wishes'),feat_size))
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)
        g['plays'].edata['eid'] = x1
        g['follows'].edata['eid'] = x2
        g['develops'].edata['eid'] = x3
        g['wishes'].edata['eid'] = x4

        #################################################################
        #  multi_update_all(): call msg_passing separately for each etype
        #################################################################

        with F.record_grad():
            g.multi_update_all(
                {'plays' : (mfunc('eid', 'm'), rfunc('m', 'y')),
                'follows': (mfunc('eid', 'm'), rfunc('m', 'y')),
                'develops': (mfunc('eid', 'm'), rfunc('m', 'y')),
                'wishes': (mfunc('eid', 'm'), rfunc('m', 'y'))},
168
169
170
171
172
173
174
175
176
177
178
                cross_reducer)
            r1 = g.nodes['game'].data['y'].clone()
            r2 = g.nodes['user'].data['y'].clone()
            loss = r1.sum() + r2.sum()
            F.backward(loss)
            e_grad1 = F.grad(g['develops'].edata['eid']).clone()
            e_grad2 = F.grad(g['plays'].edata['eid']).clone()
            e_grad3 = F.grad(g['wishes'].edata['eid']).clone()
            e_grad4 = F.grad(g['follows'].edata['eid']).clone()
        {etype : (g[etype].edata.clear())
            for _, etype, _ in g.canonical_etypes},
179
180
181
182
183
184

        #################################################################
        #  update_all(): call msg_passing for all etypes
        #################################################################

        # TODO(Israt): output type can be None in multi_update and empty
185
186
187
188
189
190
191
192
193
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)

        g['plays'].edata['eid'] = x1
        g['follows'].edata['eid'] = x2
        g['develops'].edata['eid'] = x3
        g['wishes'].edata['eid'] = x4
194

195
196
197
198
199
200
201
202
203
204
        with F.record_grad():
            g.update_all(mfunc('eid', 'm'), rfunc('m', 'y'))
            r3 = g.nodes['game'].data['y']
            r4 = g.nodes['user'].data['y']
            loss = r3.sum() + r4.sum()
            F.backward(loss)
            e_grad5 = F.grad(g['develops'].edata['eid'])
            e_grad6 = F.grad(g['plays'].edata['eid'])
            e_grad7 = F.grad(g['wishes'].edata['eid'])
            e_grad8 = F.grad(g['follows'].edata['eid'])
205
206
207
208
209
210
        # # correctness check
        def _print_error(a, b):
            for i, (x, y) in enumerate(zip(F.asnumpy(a).flatten(), F.asnumpy(b).flatten())):
                if not np.allclose(x, y):
                   print('@{} {} v.s. {}'.format(i, x, y))

211
212
213
214
215
216
        assert F.allclose(r1, r3)
        assert F.allclose(r2, r4)
        assert(F.allclose(e_grad1, e_grad5))
        assert(F.allclose(e_grad2, e_grad6))
        assert(F.allclose(e_grad3, e_grad7))
        assert(F.allclose(e_grad4, e_grad8))
217
    _test(fn.copy_e, fn.sum)
218
219
    _test(fn.copy_e, fn.max)
    _test(fn.copy_e, fn.min)
220
221
    # _test('copy_e', 'mean')

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
@parametrize_dtype
def test_binary_op(idtype):
    def _test(lhs, rhs, binary_op, reducer):

        g = create_test_heterograph(idtype)

        x1 = F.randn((g.num_nodes('user'), feat_size))
        x2 = F.randn((g.num_nodes('developer'), feat_size))
        x3 = F.randn((g.num_nodes('game'), feat_size))

        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2
        g.nodes['game'].data['h'] = x3

        x1 = F.randn((4,feat_size))
        x2 = F.randn((4,feat_size))
        x3 = F.randn((3,feat_size))
        x4 = F.randn((3,feat_size))
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)
        g['plays'].edata['h'] = x1
        g['follows'].edata['h'] = x2
        g['develops'].edata['h'] = x3
        g['wishes'].edata['h'] = x4

        builtin_msg_name = "{}_{}_{}".format(lhs, binary_op, rhs)
        builtin_msg = getattr(fn, builtin_msg_name)
        builtin_red = getattr(fn, reducer)

        #################################################################
        #  multi_update_all(): call msg_passing separately for each etype
        #################################################################

        with F.record_grad():
            g.multi_update_all(
                {etype : (builtin_msg('h', 'h', 'm'), builtin_red('m', 'y'))
                    for etype in g.canonical_etypes},
                'sum')
            r1 = g.nodes['game'].data['y']
            F.backward(r1, F.ones(r1.shape))
            n_grad1 = F.grad(r1)

        #################################################################
        #  update_all(): call msg_passing for all etypes
        #################################################################

        g.update_all(builtin_msg('h', 'h', 'm'), builtin_red('m', 'y'))
        r2 = g.nodes['game'].data['y']
        F.backward(r2, F.ones(r2.shape))
        n_grad2 = F.grad(r2)
        # correctness check
        def _print_error(a, b):
            for i, (x, y) in enumerate(zip(F.asnumpy(a).flatten(), F.asnumpy(b).flatten())):
                if not np.allclose(x, y):
                    print('@{} {} v.s. {}'.format(i, x, y))

        if not F.allclose(r1, r2):
            _print_error(r1, r2)
        assert F.allclose(r1, r2)
        # TODO (Israt): r1 and r2 have different frad func associated with
        # if not F.allclose(n_grad1, n_grad2):
        #     print('node grad')
        #     _print_error(n_grad1, n_grad2)
        # assert(F.allclose(n_grad1, n_grad2))

    target = ["u", "v", "e"]
    for lhs, rhs in product(target, target):
        if lhs == rhs:
            continue
        for binary_op in ["add", "sub", "mul", "div"]:
            # TODO(Israt) :Add support for reduce func "max", "min", "mean"
            for reducer in ["sum"]:
                print(lhs, rhs, binary_op, reducer)
                _test(lhs, rhs, binary_op, reducer)


303
304
305
if __name__ == '__main__':
    test_unary_copy_u()
    test_unary_copy_e()
306
    test_binary_op()
307