test_new_update_all_hetero.py 11.1 KB
Newer Older
1
2
3
4
5
6
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
7
from itertools import product
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import backend as F
import networkx as nx
import unittest, pytest
from dgl import DGLError
import test_utils
from test_utils import parametrize_dtype, get_cases
from scipy.sparse import rand
rfuncs = {'sum': fn.sum, 'max': fn.max, 'min': fn.min, 'mean': fn.mean}
feat_size = 2

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason='Only support PyTorch for now')

def create_test_heterograph(idtype):
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])

    g = dgl.heterograph({
        ('user', 'follows', 'user'):  ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 1, 1], [0, 0, 1]),
        ('developer', 'develops', 'game'): ([0, 1, 0], [0, 1, 1]),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def create_test_heterograph_2(idtype):

    src = np.random.randint(0, 5, 25)
    dst = np.random.randint(0, 5, 25)
    g = dgl.heterograph({
        ('user', 'becomes', 'player'):  (src, dst),
        ('user', 'follows', 'user'):  (src, dst),
        ('user', 'plays', 'game'): (src, dst),
        ('user', 'wishes', 'game'): (src, dst),
        ('developer', 'develops', 'game'): (src, dst),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

def create_test_heterograph_large(idtype):

    src = np.random.randint(0, 50, 2500)
    dst = np.random.randint(0, 50, 2500)
    g = dgl.heterograph({
        ('user', 'follows', 'user'):  (src, dst),
        ('user', 'plays', 'game'): (src, dst),
        ('user', 'wishes', 'game'): (src, dst),
        ('developer', 'develops', 'game'): (src, dst),
    }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
    return g

68
69
70
@parametrize_dtype
def test_unary_copy_u(idtype):
    def _test(mfunc, rfunc):
71
72
73
74
        g = create_test_heterograph_2(idtype)
        g0 = create_test_heterograph(idtype)
        g1 = create_test_heterograph_large(idtype)
        cross_reducer = rfunc.__name__
75
76
77
78
79
80
81
82
83
84
85
86
87
        x1 = F.randn((g.num_nodes('user'), feat_size))
        x2 = F.randn((g.num_nodes('developer'), feat_size))
        F.attach_grad(x1)
        F.attach_grad(x2)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2

        #################################################################
        #  multi_update_all(): call msg_passing separately for each etype
        #################################################################

        with F.record_grad():
            g.multi_update_all(
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
                {etype : (mfunc('h', 'm'), rfunc('m', 'y'))
                    for etype in g.canonical_etypes},
                cross_reducer)
            r1 = g.nodes['game'].data['y'].clone()
            r2 = g.nodes['user'].data['y'].clone()
            r3 = g.nodes['player'].data['y'].clone()
            loss = r1.sum() + r2.sum() + r3.sum()
            F.backward(loss)
            n_grad1 = F.grad(g.nodes['user'].data['h']).clone()
            n_grad2 = F.grad(g.nodes['developer'].data['h']).clone()

        g.nodes['user'].data.clear()
        g.nodes['developer'].data.clear()
        g.nodes['game'].data.clear()
        g.nodes['player'].data.clear()
103
104
105
106
107

        #################################################################
        #  update_all(): call msg_passing for all etypes
        #################################################################

108
109
110
111
        F.attach_grad(x1)
        F.attach_grad(x2)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        with F.record_grad():
            g.update_all(mfunc('h', 'm'), rfunc('m', 'y'))
            r4 = g.nodes['game'].data['y']
            r5 = g.nodes['user'].data['y']
            r6 = g.nodes['player'].data['y']
            loss = r4.sum() + r5.sum() + r6.sum()
            F.backward(loss)
            n_grad3 = F.grad(g.nodes['user'].data['h'])
            n_grad4 = F.grad(g.nodes['developer'].data['h'])

        assert F.allclose(r1, r4)
        assert F.allclose(r2, r5)
        assert F.allclose(r3, r6)
        assert(F.allclose(n_grad1, n_grad3))
        assert(F.allclose(n_grad2, n_grad4))
128
    _test(fn.copy_u, fn.sum)
129
130
    _test(fn.copy_u, fn.max)
    _test(fn.copy_u, fn.min)
131
132
133
134
135
136
    # _test('copy_u', 'mean')

@parametrize_dtype
def test_unary_copy_e(idtype):
    def _test(mfunc, rfunc):

137
138
139
140
141
142
143
144
        g = create_test_heterograph_large(idtype)
        g0 = create_test_heterograph_2(idtype)
        g1 = create_test_heterograph(idtype)
        cross_reducer = rfunc.__name__
        x1 = F.randn((g.num_edges('plays'),feat_size))
        x2 = F.randn((g.num_edges('follows'),feat_size))
        x3 = F.randn((g.num_edges('develops'),feat_size))
        x4 = F.randn((g.num_edges('wishes'),feat_size))
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)
        g['plays'].edata['eid'] = x1
        g['follows'].edata['eid'] = x2
        g['develops'].edata['eid'] = x3
        g['wishes'].edata['eid'] = x4

        #################################################################
        #  multi_update_all(): call msg_passing separately for each etype
        #################################################################

        with F.record_grad():
            g.multi_update_all(
                {'plays' : (mfunc('eid', 'm'), rfunc('m', 'y')),
                'follows': (mfunc('eid', 'm'), rfunc('m', 'y')),
                'develops': (mfunc('eid', 'm'), rfunc('m', 'y')),
                'wishes': (mfunc('eid', 'm'), rfunc('m', 'y'))},
164
165
166
167
168
169
170
171
172
173
174
                cross_reducer)
            r1 = g.nodes['game'].data['y'].clone()
            r2 = g.nodes['user'].data['y'].clone()
            loss = r1.sum() + r2.sum()
            F.backward(loss)
            e_grad1 = F.grad(g['develops'].edata['eid']).clone()
            e_grad2 = F.grad(g['plays'].edata['eid']).clone()
            e_grad3 = F.grad(g['wishes'].edata['eid']).clone()
            e_grad4 = F.grad(g['follows'].edata['eid']).clone()
        {etype : (g[etype].edata.clear())
            for _, etype, _ in g.canonical_etypes},
175
176
177
178
179
180

        #################################################################
        #  update_all(): call msg_passing for all etypes
        #################################################################

        # TODO(Israt): output type can be None in multi_update and empty
181
182
183
184
185
186
187
188
189
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)

        g['plays'].edata['eid'] = x1
        g['follows'].edata['eid'] = x2
        g['develops'].edata['eid'] = x3
        g['wishes'].edata['eid'] = x4
190

191
192
193
194
195
196
197
198
199
200
        with F.record_grad():
            g.update_all(mfunc('eid', 'm'), rfunc('m', 'y'))
            r3 = g.nodes['game'].data['y']
            r4 = g.nodes['user'].data['y']
            loss = r3.sum() + r4.sum()
            F.backward(loss)
            e_grad5 = F.grad(g['develops'].edata['eid'])
            e_grad6 = F.grad(g['plays'].edata['eid'])
            e_grad7 = F.grad(g['wishes'].edata['eid'])
            e_grad8 = F.grad(g['follows'].edata['eid'])
201
202
203
204
205
206
        # # correctness check
        def _print_error(a, b):
            for i, (x, y) in enumerate(zip(F.asnumpy(a).flatten(), F.asnumpy(b).flatten())):
                if not np.allclose(x, y):
                   print('@{} {} v.s. {}'.format(i, x, y))

207
208
209
210
211
212
        assert F.allclose(r1, r3)
        assert F.allclose(r2, r4)
        assert(F.allclose(e_grad1, e_grad5))
        assert(F.allclose(e_grad2, e_grad6))
        assert(F.allclose(e_grad3, e_grad7))
        assert(F.allclose(e_grad4, e_grad8))
213
    _test(fn.copy_e, fn.sum)
214
215
    _test(fn.copy_e, fn.max)
    _test(fn.copy_e, fn.min)
216
217
    # _test('copy_e', 'mean')

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
@parametrize_dtype
def test_binary_op(idtype):
    def _test(lhs, rhs, binary_op, reducer):

        g = create_test_heterograph(idtype)

        x1 = F.randn((g.num_nodes('user'), feat_size))
        x2 = F.randn((g.num_nodes('developer'), feat_size))
        x3 = F.randn((g.num_nodes('game'), feat_size))

        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        g.nodes['user'].data['h'] = x1
        g.nodes['developer'].data['h'] = x2
        g.nodes['game'].data['h'] = x3

        x1 = F.randn((4,feat_size))
        x2 = F.randn((4,feat_size))
        x3 = F.randn((3,feat_size))
        x4 = F.randn((3,feat_size))
        F.attach_grad(x1)
        F.attach_grad(x2)
        F.attach_grad(x3)
        F.attach_grad(x4)
        g['plays'].edata['h'] = x1
        g['follows'].edata['h'] = x2
        g['develops'].edata['h'] = x3
        g['wishes'].edata['h'] = x4

        builtin_msg_name = "{}_{}_{}".format(lhs, binary_op, rhs)
        builtin_msg = getattr(fn, builtin_msg_name)
        builtin_red = getattr(fn, reducer)

        #################################################################
        #  multi_update_all(): call msg_passing separately for each etype
        #################################################################

        with F.record_grad():
            g.multi_update_all(
                {etype : (builtin_msg('h', 'h', 'm'), builtin_red('m', 'y'))
                    for etype in g.canonical_etypes},
                'sum')
            r1 = g.nodes['game'].data['y']
            F.backward(r1, F.ones(r1.shape))
            n_grad1 = F.grad(r1)

        #################################################################
        #  update_all(): call msg_passing for all etypes
        #################################################################

        g.update_all(builtin_msg('h', 'h', 'm'), builtin_red('m', 'y'))
        r2 = g.nodes['game'].data['y']
        F.backward(r2, F.ones(r2.shape))
        n_grad2 = F.grad(r2)
        # correctness check
        def _print_error(a, b):
            for i, (x, y) in enumerate(zip(F.asnumpy(a).flatten(), F.asnumpy(b).flatten())):
                if not np.allclose(x, y):
                    print('@{} {} v.s. {}'.format(i, x, y))

        if not F.allclose(r1, r2):
            _print_error(r1, r2)
        assert F.allclose(r1, r2)
        # TODO (Israt): r1 and r2 have different frad func associated with
        # if not F.allclose(n_grad1, n_grad2):
        #     print('node grad')
        #     _print_error(n_grad1, n_grad2)
        # assert(F.allclose(n_grad1, n_grad2))

    target = ["u", "v", "e"]
    for lhs, rhs in product(target, target):
        if lhs == rhs:
            continue
        for binary_op in ["add", "sub", "mul", "div"]:
            # TODO(Israt) :Add support for reduce func "max", "min", "mean"
            for reducer in ["sum"]:
                print(lhs, rhs, binary_op, reducer)
                _test(lhs, rhs, binary_op, reducer)


299
300
301
if __name__ == '__main__':
    test_unary_copy_u()
    test_unary_copy_e()
302
    test_binary_op()
303